This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

PEN A Problems, 28

Prove that the expression \[\frac{\gcd(m, n)}{n}{n \choose m}\] is an integer for all pairs of positive integers $(m, n)$ with $n \ge m \ge 1$.

2017-IMOC, A7

Determine all non negative integers $k$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ that satisfies \[ f^n(n) = n + k \] for all $n \in \mathbb{N}$

1951 Miklós Schweitzer, 12

By number-theoretical functions, we will understand integer-valued functions defined on the set of all integers. Are there number-theoretical functions $ f_0(x),f_1(x),f_2(x),\dots$ such that every number theoretical function $ F(x)$ can be uniquely represented in the form $ F(x)\equal{}\sum_{k\equal{}0}^{\infty}a_kf_k(x)$, $ a_0,a_1,a_2,\dots$ being integers?

2023 Vietnam National Olympiad, 5

Tags: function , algebra
Find all functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f (0)=2022$ and $f (x+g(y)) =xf(y)+(2023-y)f(x)+g(x)$ for all $x, y \in \mathbb{R}$.

2003 China Team Selection Test, 3

Let $A= \{a_1,a_2, \cdots, a_n \}$ and $B=\{b_1,b_2 \cdots, b_n \}$ be two positive integer sets and $|A \cap B|=1$. $C= \{ \text{all the 2-element subsets of A} \} \cup \{ \text{all the 2-element subsets of B} \}$. Function $f: A \cup B \to \{ 0, 1, 2, \cdots 2 C_n^2 \}$ is injective. For any $\{x,y\} \in C$, denote $|f(x)-f(y)|$ as the $\textsl{mark}$ of $\{x,y\}$. If $n \geq 6$, prove that at least two elements in $C$ have the same $\textsl{mark}$.

2019 Brazil Team Selection Test, 1

Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.

2018 Rio de Janeiro Mathematical Olympiad, 3

Let $n$ be a positive integer. A function $f : \{1, 2, \dots, 2n\} \to \{1, 2, 3, 4, 5\}$ is [i]good[/i] if $f(j+2)$ and $f(j)$ have the same parity for every $j = 1, 2, \dots, 2n-2$. Prove that the number of good functions is a perfect square.

2024 Iran MO (3rd Round), 1

Suppose that $T\in \mathbb N$ is given. Find all functions $f:\mathbb Z \to \mathbb C$ such that, for all $m\in \mathbb Z$ we have $f(m+T)=f(m)$ and: $$\forall a,b,c \in \mathbb Z: f(a)\overline{f(a+b)f(a+c)}f(a+b+c)=1.$$ Where $\overline{a}$ is the complex conjugate of $a$.

2016 Postal Coaching, 4

Find a real function $f : [0,\infty)\to \mathbb R$ such that $f(2x+1) = 3f(x)+5$, for all $x$ in $[0,\infty)$.

2006 AMC 12/AHSME, 25

A sequence $ a_1, a_2, \ldots$ of non-negative integers is defined by the rule $ a_{n \plus{} 2} \equal{} |a_{n \plus{} 1} \minus{} a_n|$ for $ n\ge 1$. If $ a_1 \equal{} 999, a_2 < 999,$ and $ a_{2006} \equal{} 1$, how many different values of $ a_2$ are possible? $ \textbf{(A) } 165 \qquad \textbf{(B) } 324 \qquad \textbf{(C) } 495 \qquad \textbf{(D) } 499 \qquad \textbf{(E) } 660$

1988 Romania Team Selection Test, 14

Let $\Delta$ denote the set of all triangles in a plane. Consider the function $f: \Delta\to(0,\infty)$ defined by $f(ABC) = \min \left( \dfrac ba, \dfrac cb \right)$, for any triangle $ABC$ with $BC=a\leq CA=b\leq AB = c$. Find the set of values of $f$.

1995 IMC, 12

Suppose that $(f_{n})_{n=1}^{\infty}$ is a sequence of continuous functions on the interval $[0,1]$ such that $$\int_{0}^{1}f_{m}(x)f_{n}(x) dx= \begin{cases} 1& \text{if}\;n=m\\ 0 & \text{if} \;n\ne m \end{cases}$$ and $\sup\{|f_{n}(x)|: x\in [0,1]\, \text{and}\, n=1,2,\dots\}< \infty$. Show that there exists no subsequence $(f_{n_{k}})$ of $(f_{n})$ such that $\lim_{k\to \infty}f_{n_{k}}(x)$ exist for all $x\in [0,1]$.

2010 IMO Shortlist, 5

Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$ [i]Proposed by Gabriel Carroll, USA[/i]

2012 Iran Team Selection Test, 2

The function $f:\mathbb R^{\ge 0} \longrightarrow \mathbb R^{\ge 0}$ satisfies the following properties for all $a,b\in \mathbb R^{\ge 0}$: [b]a)[/b] $f(a)=0 \Leftrightarrow a=0$ [b]b)[/b] $f(ab)=f(a)f(b)$ [b]c)[/b] $f(a+b)\le 2 \max \{f(a),f(b)\}$. Prove that for all $a,b\in \mathbb R^{\ge 0}$ we have $f(a+b)\le f(a)+f(b)$. [i]Proposed by Masoud Shafaei[/i]

2003 SNSB Admission, 5

Let be an holomorphic function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ having the property that $ |f(z)|\le e^{|\text{Im}(z)|} , $ for all complex numbers $ z. $ Prove that the restriction of any of its derivatives (of any order) to the real numbers is everywhere dominated by $ 1. $

2013 Kazakhstan National Olympiad, 2

Prove that for all natural $n$ there exists $a,b,c$ such that $n=\gcd (a,b)(c^2-ab)+\gcd (b,c)(a^2-bc)+\gcd (c,a)(b^2-ca)$.

2010 Stanford Mathematics Tournament, 8

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=3^k$ for $0\le k \le n$. Find $P(n+1)$

1990 USAMO, 2

Tags: function , algebra
A sequence of functions $\, \{f_n(x) \} \,$ is defined recursively as follows: \begin{align*}f_1(x) &= \sqrt{x^2 + 48}, \quad \mbox{and} \\ f_{n+1}(x) &= \sqrt{x^2 + 6f_n(x)} \quad \mbox{for } n \geq 1.\end{align*} (Recall that $\sqrt{\makebox[5mm]{}}$ is understood to represent the positive square root.) For each positive integer $n$, find all real solutions of the equation $\, f_n(x) = 2x \,$.

2000 Stanford Mathematics Tournament, 18

Tags: function
You use a lock with four dials, each of which is set to a number between 0 and 9 (inclusive). You can never remember your code, so normally you just leave the lock with each dial one higher than the correct value. Unfortunately, last night someone changed all the values to 5. All you remember about your code is that none of the digits are prime, 0, or 1, and that the average value of the digits is 5. How many combinations will you have to try?

2009 Indonesia TST, 4

Given positive integer $ n > 1$ and define \[ S \equal{} \{1,2,\dots,n\}. \] Suppose \[ T \equal{} \{t \in S: \gcd(t,n) \equal{} 1\}. \] Let $ A$ be arbitrary non-empty subset of $ A$ such thar for all $ x,y \in A$, we have $ (xy\mod n) \in A$. Prove that the number of elements of $ A$ divides $ \phi(n)$. ($ \phi(n)$ is Euler-Phi function)

2000 Moldova National Olympiad, Problem 5

Tags: algebra , function
Find all functions $f\colon \mathbb{R}\to\mathbb{R}$ that satisfy $f(x+y)-f(x-y)=2y(3x^2+y^2)$ for all $x,y{\in}R$ ______________________________________ Azerbaijan Land of the Fire :lol:

PEN K Problems, 8

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+6f(n)=3f(f(n))+4n+2001.\]

2018 Mathematical Talent Reward Programme, MCQ: P 2

$\lim _{x \rightarrow 0^{+}} \frac{[x]}{\tan x}$ where $[x]$ is the greatest integer function [list=1] [*] -1 [*] 0 [*] 1 [*] Does not exists [/list]

2013 Korea Junior Math Olympiad, 6

Find all functions $f : \mathbb{N} \rightarrow \mathbb{N} $ satisfying \[ f(mn) = \operatorname{lcm} (m,n) \cdot \gcd( f(m), f(n) ) \] for all positive integer $m,n$.

1954 AMC 12/AHSME, 45

In a rhombus, $ ABCD$, line segments are drawn within the rhombus, parallel to diagonal $ BD$, and terminated in the sides of the rhombus. A graph is drawn showing the length of a segment as a function of its distance from vertex $ A$. The graph is: $ \textbf{(A)}\ \text{A straight line passing through the origin.} \\ \textbf{(B)}\ \text{A straight line cutting across the upper right quadrant.} \\ \textbf{(C)}\ \text{Two line segments forming an upright V.} \\ \textbf{(D)}\ \text{Two line segments forming an inverted V.} \\ \textbf{(E)}\ \text{None of these.}$