This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2014 Romania Team Selection Test, 4

Let $f$ be the function of the set of positive integers into itself, defi ned by $f(1) = 1$, $f(2n) = f(n)$ and $f(2n + 1) = f(n) + f(n + 1)$. Show that, for any positive integer $n$, the number of positive odd integers m such that $f(m) = n$ is equal to the number of positive integers[color=#0000FF][b] less or equal to [/b][/color]$n$ and coprime to $n$. [color=#FF0000][mod: the initial statement said less than $n$, which is wrong.][/color]

2007 Vietnam National Olympiad, 2

Tags: function , algebra , limit
Given a number $b>0$, find all functions $f: \mathbb{R}\rightarrow\mathbb{R}$ such that: $f(x+y)=f(x).3^{b^{y}+f(y)-1}+b^{x}.\left(3^{b^{y}+f(y)-1}-b^{y}\right) \forall x,y\in\mathbb{R}$

1992 Poland - First Round, 4

Determine all functions $f: R \longrightarrow R$ such that $f(x+y)-f(x-y)=f(x)*f(y)$ for $x,y \in R$

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 3

Show that there exists the maximum value of the function $f(x,\ y)=(3xy+1)e^{-(x^2+y^2)}$ on $\mathbb{R}^2$, then find the value.

2022-IMOC, A4

Tags: function , algebra
Let the set of all bijective functions taking positive integers to positive integers be $\mathcal B.$ Find all functions $\mathbf F:\mathcal B\to \mathbb R$ such that $$(\mathbf F(p)+\mathbf F(q))^2=\mathbf F(p \circ p)+\mathbf F(p\circ q)+\mathbf F(q\circ p)+\mathbf F(q\circ q)$$ for all $p,q \in \mathcal B.$ [i]Proposed by ckliao914[/i]

2010 Iran Team Selection Test, 4

$S,T$ are two trees without vertices of degree 2. To each edge is associated a positive number which is called length of this edge. Distance between two arbitrary vertices $v,w$ in this graph is defined by sum of length of all edges in the path between $v$ and $w$. Let $f$ be a bijective function from leaves of $S$ to leaves of $T$, such that for each two leaves $u,v$ of $S$, distance of $u,v$ in $S$ is equal to distance of $f(u), f(v)$ in $T$. Prove that there is a bijective function $g$ from vertices of $S$ to vertices of $T$ such that for each two vertices $u,v$ of $S$, distance of $u,v$ in $S$ is equal to distance of $g(u)$ and $g(v)$ in $T$.

2008 IMO Shortlist, 4

For an integer $ m$, denote by $ t(m)$ the unique number in $ \{1, 2, 3\}$ such that $ m \plus{} t(m)$ is a multiple of $ 3$. A function $ f: \mathbb{Z}\to\mathbb{Z}$ satisfies $ f( \minus{} 1) \equal{} 0$, $ f(0) \equal{} 1$, $ f(1) \equal{} \minus{} 1$ and $ f\left(2^{n} \plus{} m\right) \equal{} f\left(2^n \minus{} t(m)\right) \minus{} f(m)$ for all integers $ m$, $ n\ge 0$ with $ 2^n > m$. Prove that $ f(3p)\ge 0$ holds for all integers $ p\ge 0$. [i]Proposed by Gerhard Woeginger, Austria[/i]

2011 AIME Problems, 7

Find the number of positive integers $m$ for which there exist nonnegative integers $x_0,x_1,\ldots,x_{2011}$ such that \[ m^{x_0}=\sum_{k=1}^{2011}m^{x_k}. \]

2012 Today's Calculation Of Integral, 804

For $a>0$, find the minimum value of $I(a)=\int_1^e |\ln ax|\ dx.$

2019 Romania National Olympiad, 2

Let $f:[0, \infty) \to \mathbb{R}$ a continuous function, constant on $\mathbb{Z}_{\geq 0}.$ For any $0 \leq a < b < c < d$ which satisfy $f(a)=f(c)$ and $f(b)=f(d)$ we also have $f \left( \frac{a+b}{2} \right) = f \left( \frac{c+d}{2} \right).$ Prove that $f$ is constant.

2016 Postal Coaching, 3

Find all real numbers $a$ such that there exists a function $f:\mathbb R\to \mathbb R$ such that the following conditions are simultaneously satisfied: (a) $f(f(x))=xf(x)-ax,\;\forall x\in\mathbb{R};$ (b) $f$ is not a constant function; (c) $f$ takes the value $a$.

2004 239 Open Mathematical Olympiad, 1

Given non-constant linear functions $p_1(x), p_2(x), \dots p_n(x)$. Prove that at least $n-2$ of polynomials $p_1p_2\dots p_{n-1}+p_n, p_1p_2\dots p_{n-2} p_n + p_{n-1},\dots p_2p_3\dots p_n+p_1$ have a real root.

2005 ISI B.Stat Entrance Exam, 8

A function $f(n)$ is defined on the set of positive integers is said to be multiplicative if $f(mn)=f(m)f(n)$ whenever $m$ and $n$ have no common factors greater than $1$. Are the following functions multiplicative? Justify your answer. (a) $g(n)=5^k$ where $k$ is the number of distinct primes which divide $n$. (b) $h(n)=\begin{cases} 0 & \text{if} \ n \ \text{is divisible by} \ k^2 \ \text{for some integer} \ k>1 \\ 1 & \text{otherwise} \end{cases}$

2002 AMC 12/AHSME, 14

For all positive integers $ n$, let $ f(n) \equal{} \log_{2002} n^2$. Let \[ N \equal{} f(11) \plus{} f(13) \plus{} f(14) \] Which of the following relations is true? $ \textbf{(A)}\ N < 1 \qquad \textbf{(B)}\ N \equal{} 1 \qquad \textbf{(C)}\ 1 < N < 2 \qquad \textbf{(D)}\ N \equal{} 2 \qquad \textbf{(E)}\ N > 2$

2021 Thailand TSTST, 2

Let $f:\mathbb{R}^+\to\mathbb{R}^+$ be such that $$f(x+f(y))^2\geq f(x)\left(f(x+f(y))+f(y)\right)$$ for all $x,y\in\mathbb{R}^+$. Show that $f$ is [i]unbounded[/i], i.e. for each $M\in\mathbb{R}^+$, there exists $x\in\mathbb{R}^+$ such that $f(x)>M$.

2008 District Olympiad, 4

Tags: algebra , function
Let $ A$ represent the set of all functions $ f : \mathbb{N} \rightarrow \mathbb{N}$ such that for all $ k \in \overline{1, 2007}$, $ f^{[k]} \neq \mathrm{Id}_{\mathbb{N}}$ and $ f^{[2008]} \equiv \mathrm{Id}_{\mathbb{N}}$. a) Prove that $ A$ is non-empty. b) Find, with proof, whether $ A$ is infinite. c) Prove that all the elements of $ A$ are bijective functions. (Denote by $ \mathbb{N}$ the set of the nonnegative integers, and by $ f^{[k]}$, the composition of $ f$ with itself $ k$ times.)

1987 IMO Longlists, 73

Let $f(x)$ be a periodic function of period $T > 0$ defined over $\mathbb R$. Its first derivative is continuous on $\mathbb R$. Prove that there exist $x, y \in [0, T )$ such that $x \neq y$ and \[f(x)f'(y)=f'(x)f(y).\]

2013 Putnam, 3

Let $P$ be a nonempty collection of subsets of $\{1,\dots,n\}$ such that: (i) if $S,S'\in P,$ then $S\cup S'\in P$ and $S\cap S'\in P,$ and (ii) if $S\in P$ and $S\ne\emptyset,$ then there is a subset $T\subset S$ such that $T\in P$ and $T$ contains exactly one fewer element than $S.$ Suppose that $f:P\to\mathbb{R}$ is a function such that $f(\emptyset)=0$ and \[f(S\cup S')= f(S)+f(S')-f(S\cap S')\text{ for all }S,S'\in P.\] Must there exist real numbers $f_1,\dots,f_n$ such that \[f(S)=\sum_{i\in S}f_i\] for every $S\in P?$

2012 Bulgaria National Olympiad, 2

Let $Q(x)$ be a quadratic trinomial. Given that the function $P(x)=x^{2}Q(x)$ is increasing in the interval $(0,\infty )$, prove that: \[P(x) + P(y) + P(z) > 0\] for all real numbers $x,y,z$ such that $x+y+z>0$ and $xyz>0$.

2010 Contests, 3

Define the sequence $x_1, x_2, ...$ inductively by $x_1 = \sqrt{5}$ and $x_{n+1} = x_n^2 - 2$ for each $n \geq 1$. Compute $\lim_{n \to \infty} \frac{x_1 \cdot x_2 \cdot x_3 \cdot ... \cdot x_n}{x_{n+1}}$.

2008 China Second Round Olympiad, 3

Tags: function , algebra
For all $k=1,2,\ldots,2008$,$a_k>0$.Prove that iff $\sum_{k=1}^{2008}a_k>1$,there exists a function $f:N\rightarrow R$ satisfying (1)$0=f(0)<f(1)<f(2)<\ldots$; (2)$f(n)$ has a finite limit when $n$ approaches infinity; (3)$f(n)-f({n-1})=\sum_{k=1}^{2008}a_kf({n+k})-\sum_{k=0}^{2007}a_{k+1}f({n+k})$,for all $n=1,2,3,\ldots$.

2023-24 IOQM India, 21

Tags: function
For $n \in \mathbb{N}$, consider non-negative valued functions $f$ on $\{1,2, \cdots , n\}$ satisfying $f(i) \geqslant f(j)$ for $i>j$ and $\sum_{i=1}^{n} (i+ f(i))=2023.$ Choose $n$ such that $\sum_{i=1}^{n} f(i)$ is at least. How many such functions exist in that case?

2000 China Team Selection Test, 2

Tags: algebra , function
[b]a.)[/b] Let $a,b$ be real numbers. Define sequence $x_k$ and $y_k$ such that \[x_0 = 1, y_0 = 0, x_{k+1} = a \cdot x_k - b \cdot y_l, \quad y_{k+1} = x_k - a \cdot y_k \text{ for } k = 0,1,2, \ldots \] Prove that \[x_k = \sum^{[k/2]}_{l=0} (-1)^l \cdot a^{k - 2 \cdot l} \cdot \left(a^2 + b \right)^l \cdot \lambda_{k,l}\] where $\lambda_{k,l} = \sum^{[k/2]}_{m=l} \binom{k}{2 \cdot m} \cdot \binom{m}{l}$ [b]b.)[/b] Let $u_k = \sum^{[k/2]}_{l=0} \lambda_{k,l} $. For positive integer $m,$ denote the remainder of $u_k$ divided by $2^m$ as $z_{m,k}$. Prove that $z_{m,k},$ $k = 0,1,2, \ldots$ is a periodic function, and find the smallest period.

2013 Hanoi Open Mathematics Competitions, 2

The smallest value of the function $f(x) =|x| +\left|\frac{1 - 2013x}{2013 - x}\right|$ where $x \in [-1, 1] $ is: (A): $\frac{1}{2012}$, (B): $\frac{1}{2013}$, (C): $\frac{1}{2014}$, (D): $\frac{1}{2015}$, (E): None of the above.

2012 Kazakhstan National Olympiad, 2

Tags: function , algebra
Function $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that $f(xf(y))=yf(x)$ for any $x,y$ are real numbers. Prove that $f(-x) = -f(x)$ for all real numbers $x$.