Found problems: 4776
2003 Gheorghe Vranceanu, 3
Let be a sequence of functions $ a_n:\mathbb{R}\longrightarrow\mathbb{Z} $ defined as $ a_n(x)=\sum_{i=1}^n (-1)^i\lfloor xi\rfloor . $
[b]a)[/b] Find the real numbers $ y $ such that $ \left( a_n(y) \right)_{n\ge 1} $ converges to $ 1. $
[b]b)[/b] Find the real numbers $ z $ such that $ \left( a_n(z) \right)_{n\ge 1} $ converges.
2017 Korea Winter Program Practice Test, 2
Find all functions $f : \mathbb{N} \to \mathbb{N}$ satisfying the following conditions:
[list]
[*]For every $n \in \mathbb{N}$, $f^{(n)}(n) = n$. (Here $f^{(1)} = f$ and $f^{(k)} = f^{(k-1)} \circ f$.)
[*]For every $m, n \in \mathbb{N}$, $\lvert f(mn) - f(m) f(n) \rvert < 2017$.
[/list]
2014 Online Math Open Problems, 7
Define the function $f(x, y, z)$ by\[f(x, y, z) = x^{y^z} - x^{z^y} + y^{z^x} - y^{x^z} + z^{x^y}.\]Evaluate $f(1, 2, 3) + f(1, 3, 2) + f(2, 1, 3) + f(2, 3, 1) + f(3, 1, 2) + f(3, 2, 1)$.
[i]Proposed by Robin Park[/i]
PEN A Problems, 71
Determine all integers $n > 1$ such that \[\frac{2^{n}+1}{n^{2}}\] is an integer.
2016 Israel National Olympiad, 7
Find all functions $f:\mathbb{Z}\rightarrow\mathbb{C}$ such that $f(x(2y+1))=f(x(y+1))+f(x)f(y)$ holds for any two integers $x,y$.
2010 Harvard-MIT Mathematics Tournament, 5
Let the functions $f(\alpha,x)$ and $g(\alpha)$ be defined as \[f(\alpha,x)=\dfrac{(\frac{x}{2})^\alpha}{x-1}\qquad\qquad\qquad g(\alpha)=\,\dfrac{d^4f}{dx^4}|_{x=2}\] Then $g(\alpha)$ is a polynomial is $\alpha$. Find the leading coefficient of $g(\alpha)$.
1964 Miklós Schweitzer, 6
Let $ y_1(x)$ be an arbitrary, continuous, positive function on $ [0,A]$, where $ A$ is an arbitrary positive number. Let \[ y_{n+1}=2 \int_0^x \sqrt{y_n(t)}dt \;(n=1,2,...)\ .\] Prove that the functions $ y_n(x)$ converge to the function $ y=x^2$ uniformly on $ [0,A]$.
2007 Korea Junior Math Olympiad, 6
Let $T = \{1,2,...,10\}$. Find the number of bijective functions $f : T\to T$ that satises the following for all $x \in T$:
$f(f(x)) = x$
$|f(x) - x| \ge 2$
2018 Miklós Schweitzer, 8
Does there exist a piecewise linear, continuous, surjective mapping $f: [0,1]\to [0,1]$ such that $f(0)=f(1)=0$, and for all positive integer $n$,
$$2.0001^{(n-10)} <P_n(f)<2.9999^{(n+10)}$$holds, where $P_n(f)$ is the number of points $x$ such that $\underbrace{f(\dotsc f}_n(x)\dotsc )=x$?
1976 Euclid, 10
Source: 1976 Euclid Part A Problem 10
-----
If $f$, $g$, $h$, and $k$ are functions and $a$ and $b$ are numbers such that $f(x)=(x-1)g(x)+3=(x+1)h(x)+1=(x^2-1)k(x)+ax+b$ for all $x$, then $(a,b)$ equals
$\textbf{(A) } (-2,1) \qquad \textbf{(B) } (-1,2) \qquad \textbf{(C) } (1,1) \qquad \textbf{(D) } (1,2) \qquad \textbf{(E) } (2,1)$
2014 Middle European Mathematical Olympiad, 2
Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that
\[ xf(xy) + xyf(x) \ge f(x^2)f(y) + x^2y \]
holds for all $x,y \in \mathbb{R}$.
2014 India PRMO, 18
Let $f$ be a one-to-one function from the set of natural numbers to itself such that $f(mn) = f(m)f(n)$ for all natural numbers $m$ and $n$. What is the least possible value of $f (999)$ ?
2015 IFYM, Sozopol, 8
Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.
PEN K Problems, 19
Find all functions $f: \mathbb{Q}^{+}\to \mathbb{Q}^{+}$ such that for all $x,y \in \mathbb{Q}$: \[f \left( x+\frac{y}{x}\right) =f(x)+\frac{f(y)}{f(x)}+2y, \; x,y \in \mathbb{Q}^{+}.\]
2017 CMIMC Computer Science, 7
You are presented with a mystery function $f:\mathbb N^2\to\mathbb N$ which is known to satisfy \[f(x+1,y)>f(x,y)\quad\text{and}\quad f(x,y+1)>f(x,y)\] for all $(x,y)\in\mathbb N^2$. I will tell you the value of $f(x,y)$ for \$1. What's the minimum cost, in dollars, that it takes to compute the $19$th smallest element of $\{f(x,y)\mid(x,y)\in\mathbb N^2\}$? Here, $\mathbb N=\{1,2,3,\dots\}$ denotes the set of positive integers.
2008 District Olympiad, 3
For any real $ a$ define $ f_a : \mathbb{R} \rightarrow \mathbb{R}^2$ by the law $ f_a(t) \equal{} \left( \sin(t), \cos(at) \right)$.
a) Prove that $ f_{\pi}$ is not periodic.
b) Determine the values of the parameter $ a$ for which $ f_a$ is periodic.
[b]Remark[/b]. L. Euler proved in $ 1737$ that $ \pi$ is irrational.
2010 Tournament Of Towns, 7
A multi-digit number is written on the blackboard. Susan puts in a number of plus signs between some pairs of adjacent digits. The addition is performed and the process is repeated with the sum. Prove that regardless of what number was initially on the blackboard, Susan can always obtain a single-digit number in at most ten steps.
2007 IMO Shortlist, 3
Let $ n$ be a positive integer, and let $ x$ and $ y$ be a positive real number such that $ x^n \plus{} y^n \equal{} 1.$ Prove that
\[ \left(\sum^n_{k \equal{} 1} \frac {1 \plus{} x^{2k}}{1 \plus{} x^{4k}} \right) \cdot \left( \sum^n_{k \equal{} 1} \frac {1 \plus{} y^{2k}}{1 \plus{} y^{4k}} \right) < \frac {1}{(1 \minus{} x) \cdot (1 \minus{} y)}.
\]
[i]Author: Juhan Aru, Estonia[/i]
2021 IMC, 4
Let $f:\mathbb{R}\to \mathbb{R}$ be a function. Suppose that for every $\varepsilon >0$ , there exists a function $g:\mathbb{R}\to (0,\infty)$ such that for every pair $(x,y)$ of real numbers,
if $|x-y|<\text{min}\{g(x),g(y)\}$, then $|f(x)-f(y)|<\varepsilon$
Prove that $f$ is pointwise limit of a squence of continuous $\mathbb{R}\to \mathbb{R}$ functions i.e., there is a squence $h_1,h_2,...,$ of continuous $\mathbb{R}\to \mathbb{R}$ such that $\lim_{n\to \infty}h_n(x)=f(x)$ for every $x\in \mathbb{R}$
2010 Contests, 2
Let $n$ be a positive integer number and let $a_1, a_2, \ldots, a_n$ be $n$ positive real numbers. Prove that $f : [0, \infty) \rightarrow \mathbb{R}$, defined by
\[f(x) = \dfrac{a_1 + x}{a_2 + x} + \dfrac{a_2 + x}{a_3 + x} + \cdots + \dfrac{a_{n-1} + x}{a_n + x} + \dfrac{a_n + x}{a_1 + x}, \]
is a decreasing function.
[i]Dan Marinescu et al.[/i]
2005 Taiwan National Olympiad, 1
Let $a,b,c$ be three positive real numbers such that $abc=1$. Prove that: \[ 1+\frac{3}{a+b+c}\ge{\frac{6}{ab+bc+ca}} . \]
1997 Romania Team Selection Test, 3
Let $n\ge 4$ be a positive integer and let $M$ be a set of $n$ points in the plane, where no three points are collinear and not all of the $n$ points being concyclic. Find all real functions $f:M\to\mathbb{R}$ such that for any circle $\mathcal{C}$ containing at least three points from $M$, the following equality holds:
\[\sum_{P\in\mathcal{C}\cap M} f(P)=0\]
[i]Dorel Mihet[/i]
2015 Thailand TSTST, 2
Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$,
\[f(f(x - y)) = f(x)f(y) + f(x) - f(y) - xy.\]
2001 Moldova National Olympiad, Problem 1
The sequence of functions $f_n:[0,1]\to\mathbb R$ $(n\ge2)$ is given by $f_n=1+x^{n^2-1}+x^{n^2+2n}$. Let $S_n$ denote the area of the figure bounded by the graph of the function $f_n$ and the lines $x=0$, $x=1$, and $y=0$. Compute
$$\lim_{n\to\infty}\left(\frac{\sqrt{S_1}+\sqrt{S_2}+\ldots+\sqrt{S_n}}n\right)^n.$$
2022 Costa Rica - Final Round, 4
Maria was a brilliant mathematician who found the following property about her year of birth: if $f$ is a function defined in the set of natural numbers $N = \{0, 1, 2, 3, 4, 5,...\}$ such that $f(1) = 1335$ and $f(n+1) = f(n)-2n+43$ for all $n \in N$, then his year of birth is the maximum value that $f(n)$ can reach when $n$ takes values in $N$. Determine the year of birth of Mary.