Found problems: 4776
2007 VJIMC, Problem 3
Let $f:[0,1]\to\mathbb R$ be a continuous function such that $f(0)=f(1)=0$. Prove that the set
$$A:=\{h\in[0,1]:f(x+h)=f(x)\text{ for some }x\in[0,1]\}$$is Lebesgue measureable and has Lebesgue measure at least $\frac12$.
2011 Postal Coaching, 3
Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be a function such that $(x + y)f (x) \le x^2 + f (xy) + 110$, for all $x, y$ in $\mathbb{N}$. Determine the minimum and maximum values of $f (23) + f (2011)$.
2019 Czech-Austrian-Polish-Slovak Match, 4
Given a real number $\alpha$, find all pairs $(f,g)$ of functions $f,g :\mathbb{R} \to \mathbb{R}$ such that $$xf(x+y)+\alpha \cdot yf(x-y)=g(x)+g(y) \;\;\;\;\;\;\;\;\;\;\; ,\forall x,y \in \mathbb{R}.$$
1992 AIME Problems, 1
Find the sum of all positive rational numbers that are less than $10$ and that have denominator $30$ when written in lowest terms.
2019 Jozsef Wildt International Math Competition, W. 48
Let $f : (0,+\infty) \to \mathbb{R}$ a convex function and $\alpha, \beta, \gamma > 0$. Then $$\frac{1}{6\alpha}\int \limits_0^{6\alpha}f(x)dx\ +\ \frac{1}{6\beta}\int \limits_0^{6\beta}f(x)dx\ +\ \frac{1}{6\gamma}\int \limits_0^{6\gamma}f(x)dx$$ $$\geq \frac{1}{3\alpha +2\beta +\gamma}\int \limits_0^{3\alpha +2\beta +\gamma}f(x)dx\ +\ \frac{1}{\alpha +3\beta +2\gamma}\int \limits_0^{\alpha +3\beta +2\gamma}f(x)dx\ $$ $$+\ \frac{1}{2\alpha +\beta +3\gamma}\int \limits_0^{2\alpha +\beta +3\gamma}f(x)dx$$
1959 Putnam, B7
For each positive integer $n$, let $f_n$ be a real-valued symmetric function of $n$ real variables. Suppose that for all $n$ and all real numbers $x_1,\ldots,x_n, x_{n+1},y$ it is true that
$\;(1)\; f_{n}(x_1 +y ,\ldots, x_n +y) = f_{n}(x_1 ,\ldots, x_n) +y,$
$\;(2)\;f_{n}(-x_1 ,\ldots, -x_n) =-f_{n}(x_1 ,\ldots, x_n),$
$\;(3)\; f_{n+1}(f_{n}(x_1,\ldots, x_n),\ldots, f_{n}(x_1,\ldots, x_n), x_{n+1}) =f_{n+1}(x_1 ,\ldots, x_{n}).$
Prove that $f_{n}(x_{1},\ldots, x_n) =\frac{x_{1}+\cdots +x_{n}}{n}.$
2005 MOP Homework, 6
Find all functions $f:\mathbb{Z} \rightarrow \mathbb{R}$ such that $f(1)=\tfrac{5}{2}$ and that \[f(x)f(y)=f(x+y)+f(x-y)\] for all integers $x$ and $y$.
2003 AMC 12-AHSME, 9
Let $ f$ be a linear function for which $ f(6)\minus{}f(2)\equal{}12$. What is $ f(12)\minus{}f(2)$?
$ \textbf{(A)}\ 12 \qquad
\textbf{(B)}\ 18 \qquad
\textbf{(C)}\ 24 \qquad
\textbf{(D)}\ 30 \qquad
\textbf{(E)}\ 36$
2007 Balkan MO Shortlist, N2
Prove that there are no distinct positive integers $x$ and $y$ such that
$x^{2007} + y! = y^{2007} + x! $
1971 Miklós Schweitzer, 4
Suppose that $ V$ is a locally compact topological space that admits no countable covering with compact sets. Let $ \textbf{C}$
denote the set of all compact subsets of the space $ V$ and $ \textbf{U}$ the set of open subsets that are not contained in any compact set. Let $ f$ be a function from $ \textbf{U}$ to $ \textbf{C}$ such that $ f(U)\subseteq U$ for all $ U \in \textbf{U}$. Prove that either
(i) there exists a nonempty compact set $ C$ such that $ f(U)$ is not a proper subset of $ C$ whenever $ C \subseteq U \in \textbf{U}$,
(ii) or for some compact set $ C$, the set \[ f^{-1}(C)= \bigcup \{U \in \textbf{U}\;: \ \;f(U)\subseteq C\ \}\] is an element of $ \textbf{U}$, that is, $ f^{-1}(C)$ is not contained in any compact set.
[i]A. Mate[/i]
1991 Arnold's Trivium, 1
Sketch the graph of the derivative and the graph of the integral of a function given by a free-hand graph.
2016 Canadian Mathematical Olympiad Qualification, 8
Let $n \geq 3$ be a positive integer. A [i]chipped $n$-board[/i] is a $2 \times n$ checkerboard with the bottom left square removed. Lino wants to tile a chipped $n$-board and is allowed to use the following types of tiles:
[list]
[*] Type 1: any $1 \times k$ board where $1 \leq k \leq n$
[*] Type 2: any chipped $k$-board where $1 \leq k \leq n$ that must cover the left-most tile of the $2 \times n$ checkerboard.
[/list]
Two tilings $T_1$ and $T_2$ are considered the same if there is a set of consecutive Type 1 tiles in both rows of $T_1$ that can be vertically swapped to obtain the tiling $T_2$. For example, the following three tilings of a chipped $7$-board are the same:
[img]http://i.imgur.com/8QaSgc0.png[/img]
For any positive integer $n$ and any positive integer $1 \leq m \leq 2n - 1$, let $c_{m,n}$ be the number of distinct tilings of a chipped $n$-board using exactly $m$ tiles (any combination of tile types may be used), and define the polynomial $$P_n(x) = \sum^{2n-1}_{m=1} c_{m,n}x^m.$$
Find, with justification, polynomials $f(x)$ and $g(x)$ such that $$P_n(x) = f(x)P_{n-1}(x) + g(x)P_{n-2}(x)$$ for all $n \geq 3$.
1982 IMO Shortlist, 19
Let $M$ be the set of real numbers of the form $\frac{m+n}{\sqrt{m^2+n^2}}$, where $m$ and $n$ are positive integers. Prove that for every pair $x \in M, y \in M$ with $x < y$, there exists an element $z \in M$ such that $x < z < y.$
2012 Peru IMO TST, 1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $$\displaystyle{f(f(x)) = \frac{x^2 - x}{2}\cdot f(x) + 2-x,}$$ for all $x \in \mathbb{R}.$ Find all possible values of $f(2).$
2013 Ukraine Team Selection Test, 9
Determine all functions $f:\Bbb{R}\to\Bbb{R}$ such that \[ f^2(x+y)=f^2(x)+2f(xy)+f^2(y), \] for all $x,y\in \Bbb{R}.$
1984 AIME Problems, 7
The function $f$ is defined on the set of integers and satisfies \[ f(n)=\begin{cases} n-3 & \text{if } n\ge 1000 \\ f(f(n+5)) & \text{if } n<1000\end{cases} \] Find $f(84)$.
2014 Contests, Problem 1
Let $g:[2013,2014]\to\mathbb{R}$ a function that satisfy the following two conditions:
i) $g(2013)=g(2014) = 0,$
ii) for any $a,b \in [2013,2014]$ it hold that $g\left(\frac{a+b}{2}\right) \leq g(a) + g(b).$
Prove that $g$ has zeros in any open subinterval $(c,d) \subset[2013,2014].$
2007 Today's Calculation Of Integral, 181
For real number $a,$ find the minimum value of $\int_{0}^{\frac{\pi}{2}}\left|\frac{\sin 2x}{1+\sin^{2}x}-a\cos x\right| dx.$
1990 China Team Selection Test, 4
Number $a$ is such that $\forall a_1, a_2, a_3, a_4 \in \mathbb{R}$, there are integers $k_1, k_2, k_3, k_4$ such that $\sum_{1 \leq i < j \leq 4} ((a_i - k_i) - (a_j - k_j))^2 \leq a$. Find the minimum of $a$.
2000 All-Russian Olympiad, 1
Find all functions $ f: \mathbb{R}\longrightarrow \mathbb{R}$ such that
\[f(x\plus{}y)\plus{}f(y\plus{}z)\plus{}f(z\plus{}x)\ge 3f(x\plus{}2y\plus{}3z)\]
for all $x, y, z \in \mathbb R$.
2008 Singapore Team Selection Test, 2
Let $ x_1, x_2,\ldots , x_n$ be positive real numbers such that $ x_1x_2\cdots x_n \equal{} 1$. Prove that
\[\sum_{i \equal{} 1}^n \frac {1}{n \minus{} 1 \plus{} x_i}\le 1.\]
2012 Indonesia TST, 1
Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that
\[f(x+y) + f(x)f(y) = f(xy) + (y+1)f(x) + (x+1)f(y)\]
for all $x,y \in \mathbb{R}$.
2009 Purple Comet Problems, 25
The polynomial $P(x)=a_0+a_1x+a_2x^2+...+a_8x^8+2009x^9$ has the property that $P(\tfrac{1}{k})=\tfrac{1}{k}$ for $k=1,2,3,4,5,6,7,8,9$. There are relatively prime positive integers $m$ and $n$ such that $P(\tfrac{1}{10})=\tfrac{m}{n}$. Find $n-10m$.
2009 AMC 12/AHSME, 24
The [i]tower function of twos[/i] is defined recursively as follows: $ T(1) \equal{} 2$ and $ T(n \plus{} 1) \equal{} 2^{T(n)}$ for $ n\ge1$. Let $ A \equal{} (T(2009))^{T(2009)}$ and $ B \equal{} (T(2009))^A$. What is the largest integer $ k$ such that
\[ \underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}}
\]is defined?
$ \textbf{(A)}\ 2009\qquad \textbf{(B)}\ 2010\qquad \textbf{(C)}\ 2011\qquad \textbf{(D)}\ 2012\qquad \textbf{(E)}\ 2013$
2014 AIME Problems, 12
Let $A=\{1,2,3,4\}$, and $f$ and $g$ be randomly chosen (not necessarily distinct) functions from $A$ to $A$. The probability that the range of $f$ and the range of $g$ are disjoint is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.