Found problems: 4776
2019 Jozsef Wildt International Math Competition, W. 27
Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that$$f(-x)+\int \limits_0^xtf(x-t)dt=x,\ \forall\ x\in \mathbb{R}$$
2007 IMS, 8
Let \[T=\{(tq,1-t) \in\mathbb R^{2}| t \in [0,1],q\in\mathbb Q\}\]Prove that each continuous function $f: T\longrightarrow T$ has a fixed point.
2000 France Team Selection Test, 2
A function from the positive integers to the positive integers satisfies these properties
1. $f(ab)=f(a)f(b)$ for any two coprime positive integers $a,b$.
2. $f(p+q)=f(p)+f(q)$ for any two primes $p,q$.
Prove that $f(2)=2, f(3)=3, f(1999)=1999$.
1998 National High School Mathematics League, 14
Function $f(x)=ax^2+8x+3(a<0)$. For any given nerative number $a$, define the largest positive number $l(a)$: $|f(x)|\leq5$ for all $x\in[0,l(a)]$.
Find the largest $l(a)$, and $a$ when $l(a)$ takes its maximum value.
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]
1995 Israel Mathematical Olympiad, 8
A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying
$\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.
2015 Switzerland - Final Round, 3
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, such that for arbitrary $x,y \in \mathbb{R}$: \[ (y+1)f(x)+f(xf(y)+f(x+y))=y.\]
1976 Miklós Schweitzer, 7
Let $ f_1,f_2,\dots,f_n$ be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $ f_i\overline{f}_k, \;1 \leq i,k \leq n$, are also linearly independent.
[i]L. Lempert[/i]
2004 Iran MO (2nd round), 2
Let $f:\mathbb{R}^{\geq 0}\to\mathbb{R}$ be a function such that $f(x)-3x$ and $f(x)-x^3$ are ascendant functions. Prove that $f(x)-x^2-x$ is an ascendant function, too.
(We call the function $g(x)$ ascendant, when for every $x\leq{y}$ we have $g(x)\leq{g(y)}$.)
2011 Romania Team Selection Test, 1
Determine all real-valued functions $f$ on the set of real numbers satisfying
\[2f(x)=f(x+y)+f(x+2y)\]
for all real numbers $x$ and all non-negative real numbers $y$.
2005 Iran Team Selection Test, 1
Find all $f : N \longmapsto N$ that there exist $k \in N$ and a prime $p$ that:
$\forall n \geq k \ f(n+p)=f(n)$ and also if $m \mid n$ then $f(m+1) \mid f(n)+1$
2010 Today's Calculation Of Integral, 534
Find the indefinite integral $ \int \frac{x^3}{(x\minus{}1)^3(x\minus{}2)}\ dx$.
2011 Bogdan Stan, 3
Find all Riemann integrable functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ which have the property that, for all nonconstant and continuous functions $ g:\mathbb{R}\longrightarrow\mathbb{R}, $ and all real numbers $ a,b $ such that $ a<b, $ the following equality holds.
$$ \int_a^b \left( f\circ g \right) (x)dx=\int_a^b \left( g\circ f \right) (x)dx $$
[i]Cosmin Nițu[/i]
2022 USEMO, 2
A function $\psi \colon {\mathbb Z} \to {\mathbb Z}$ is said to be [i]zero-requiem[/i] if for any positive integer $n$ and any integers $a_1$, $\ldots$, $a_n$ (not necessarily distinct), the sums $a_1 + a_2 + \dots + a_n$ and $\psi(a_1) + \psi(a_2) + \dots + \psi(a_n)$ are not both zero.
Let $f$ and $g$ be two zero-requiem functions for which $f \circ g$ and $g \circ f$ are both the identity function (that is, $f$ and $g$ are mutually inverse bijections). Given that $f+g$ is [i]not[/i] a zero-requiem function, prove that $f \circ f$ and $g \circ g$ are both zero-requiem.
[i]Sutanay Bhattacharya[/i]
2000 Federal Competition For Advanced Students, Part 2, 3
Find all functions $f : \mathbb R \to \mathbb R$ such that for all reals $x, y, z$ it holds that
\[f(x + f(y + z)) + f(f(x + y) + z) = 2y.\]
1999 IMO Shortlist, 6
Suppose that every integer has been given one of the colours red, blue, green or yellow. Let $x$ and $y$ be odd integers so that $|x| \neq |y|$. Show that there are two integers of the same colour whose difference has one of the following values: $x,y,x+y$ or $x-y$.
2016 India IMO Training Camp, 2
Find all functions $f:\mathbb R\to\mathbb R$ such that $$f\left( x^2+xf(y)\right)=xf(x+y)$$ for all reals $x,y$.
2003 Irish Math Olympiad, 5
show that thee is no function f definedonthe positive real numbes such that :
$f(y) > (y-x)f(x)^2$
2014 Canadian Mathematical Olympiad Qualification, 1
Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.
Dumbest FE I ever created, 1.
Determine all functions $f\colon\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that, for all positive integers $m$ and $n$,
$$ m^{\phi(n)}+n^{\phi(m)} \mid f(m)^n + f(n)^m$$
2021 2nd Memorial "Aleksandar Blazhevski-Cane", 4
Find all positive integers $n$ that have precisely $\sqrt{n+1}$ natural divisors.
2013 ELMO Shortlist, 8
We define the [i]Fibonacci sequence[/i] $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the [i]Stirling number of the second kind[/i] $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets.
For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$.
[i]Proposed by Victor Wang[/i]
1989 Irish Math Olympiad, 3
A function $f$ is defined on the natural numbers $\mathbb{N}$ and satisfies the following rules:
(a) $f(1)=1$;
(b) $f(2n)=f(n)$ and $f(2n+1)=f(2n)+1$ for all $n\in \mathbb{N}$.
Calculate the maximum value $m$ of the set $\{f(n):n\in \mathbb{N}, 1\le n\le 1989\}$, and determine the number of natural numbers $n$, with $1\le n\le 1989$, that satisfy the equation $f(n)=m$.
2011 National Olympiad First Round, 35
Which of these has the smallest maxima on positive real numbers?
$\textbf{(A)}\ \frac{x^2}{1+x^{12}} \qquad\textbf{(B)}\ \frac{x^3}{1+x^{11}} \qquad\textbf{(C)}\ \frac{x^4}{1+x^{10}} \qquad\textbf{(D)}\ \frac{x^5}{1+x^{9}} \qquad\textbf{(E)}\ \frac{x^6}{1+x^{8}}$
2003 Estonia Team Selection Test, 3
Let $N$ be the set of all non-negative integers and for each $n \in N$ denote $n'= n +1$. The function $A : N^3 \to N$ is defined as follows:
(i) $A(0, m, n) = m'$ for all $m, n \in N$
(ii) $A(k', 0, n) =\left\{ \begin{array}{ll}
n & if \, \, k = 0 \\
0 & if \, \,k = 1, \\
1 & if \, \, k > 1 \end{array} \right.$ for all $k, n \in N$
(iii) $A(k', m', n) = A(k, A(k',m,n), n)$ for all $k,m, n \in N$.
Compute $A(5, 3, 2)$.
(H. Nestra)