Found problems: 4776
2024 Myanmar IMO Training, 7
Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\] for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$.
Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.
2013 India IMO Training Camp, 1
Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order.
We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.
2008 German National Olympiad, 1
Find all real numbers $ x$ such that \[ \sqrt{x\plus{}1}\plus{}\sqrt{x\plus{}3} \equal{} \sqrt{2x\minus{}1}\plus{}\sqrt{2x\plus{}1}.\]
2009 Today's Calculation Of Integral, 489
Find the following limit.
$ \lim_{n\to\infty} \int_{\minus{}1}^1 |x|\left(1\plus{}x\plus{}\frac{x^2}{2}\plus{}\frac{x^3}{3}\plus{}\cdots \plus{}\frac{x^{2n}}{2n}\right)\ dx$.
2018 Bundeswettbewerb Mathematik, 2
Find all real numbers $x$ satisfying the equation
\[\left\lfloor \frac{20}{x+18}\right\rfloor+\left\lfloor \frac{x+18}{20}\right\rfloor=1.\]
Gheorghe Țițeica 2025, P2
Let $n\geq 2$ and consider the functions $f,g:\{1,2,\dots ,n\}\rightarrow\{1,2,\dots ,n\}$ such that $$g(k)=|\{i\mid f(i)\leq f(k)\}|$$ for all $1\leq k\leq n$.
[list=a]
[*] Show that $f$ is bijective if and only if $g$ is bijective.
[*] If $g$ is a given function, find how many functions $f$ (in terms of $g$) satisfy the hypothesis.
[/list]
[i]Silviu Cristea[/i]
2018 Mathematical Talent Reward Programme, SAQ: P 4
Suppose $S$ is a finite subset of $\mathbb{R}$. If $f: S \rightarrow S$ is a function such that,
$$
\left|f\left(s_{1}\right)-f\left(s_{2}\right)\right| \leq \frac{1}{2}\left|s_{1}-s_{2}\right|, \forall s_{1}, s_{2} \in S
$$
Prove that, there exists a $x \in S$ such that $f(x)=x$
2014 BMO TST, 4
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $f(x)f(y)=f(x+y)+xy$ for all $x,y\in \mathbb{R}$.
1998 Tournament Of Towns, 6
In a function $f (x) = (x^2 + ax + b )/ (x^2 + cx + d)$ , the quadratics $x^2 + ax + b$ and $x^2 + cx + d$ have no common roots. Prove that the next two statements are equivalent:
(i) there is a numerical interval without any values of $f(x)$ ,
(ii) $f(x)$ can be represented in the form $f (x) = f_1 (f_2( ... f_{n-1} (f_n (x))... ))$ where each of the functions $f_j$ is o f one of the three forms $k_j x + b_j, 1/x, x^2$ .
(A Kanel)
PEN M Problems, 22
Let $\, a$, and $b \,$ be odd positive integers. Define the sequence $\{f_n\}_{n\ge 1}$ by putting $\, f_1 = a,$ $f_2 = b, \,$ and by letting $\, f_n \,$ for $\, n \geq 3 \,$ be the greatest odd divisor of $\, f_{n-1} + f_{n-2}$. Show that $\, f_n \,$ is constant for sufficiently large $\, n \,$ and determine the eventual value as a function of $\, a \,$ and $\, b$.
2017 Romania National Olympiad, 4
Let be a function $ f $ of class $ \mathcal{C}^1[a,b] $ whose derivative is positive. Prove that there exists a real number $ c\in (a,b) $ such that
$$ f(f(b))-f(f(a))=(f'(c))^2(b-a) . $$
1991 Arnold's Trivium, 81
Find the Green's function of the operator $d^2/dx^2-1$ and solve the equation
\[\int_{-\infty}^{+\infty}e^{-|x-y|}u(y)dy=e^{-x^2}\]
2021 Korea - Final Round, P6
Find all functions $f,g: \mathbb{R} \to \mathbb{R}$ such that satisfies
$$f(x^2-g(y))=g(x)^2-y$$
for all $x,y \in \mathbb{R}$
2008 AMC 12/AHSME, 7
For real numbers $ a$ and $ b$, define $ a\$b\equal{}(a\minus{}b)^2$. What is $ (x\minus{}y)^2\$(y\minus{}x)^2$?
$ \textbf{(A)}\ 0 \qquad
\textbf{(B)}\ x^2\plus{}y^2 \qquad
\textbf{(C)}\ 2x^2 \qquad
\textbf{(D)}\ 2y^2 \qquad
\textbf{(E)}\ 4xy$
2007 Romania Team Selection Test, 2
Let $f: \mathbb{Q}\rightarrow \mathbb{R}$ be a function such that \[|f(x)-f(y)|\leq (x-y)^{2}\] for all $x,y \in\mathbb{Q}$. Prove that $f$ is constant.
1962 Vietnam National Olympiad, 2
Let $ f(x) \equal{} (1 \plus{} x)\cdot\sqrt{(2 \plus{} x^2)}\cdot\sqrt[3]{(3 \plus{} x^3)}$. Determine $ f'(1)$.
1997 Taiwan National Olympiad, 7
Find all positive integers $k$ for which there exists a function $f: \mathbb{N}\to\mathbb{Z}$ satisfying $f(1997)=1998$ and $f(ab)=f(a)+f(b)+kf(\gcd{(a,b)})\forall a,b$.
2010 Costa Rica - Final Round, 6
Let $F$ be the family of all sets of positive integers with $2010$ elements that satisfy the following condition:
The difference between any two of its elements is never the same as the difference of any other two of its elements. Let $f$ be a function defined from $F$ to the positive integers such that $f(K)$ is the biggest element of $K \in F$. Determine the least value of $f(K)$.
1989 IMO Longlists, 95
Let $ n$ be a positive integer, $ X \equal{} \{1, 2, \ldots , n\},$ and $ k$ a positive integer such that $ \frac{n}{2} \leq k \leq n.$ Determine, with proof, the number of all functions $ f : X \mapsto X$ that satisfy the following conditions:
[b](i)[/b] $ f^2 \equal{} f;$
[b](ii)[/b] the number of elements in the image of $ f$ is $ k;$
[b](iii)[/b] for each $ y$ in the image of $ f,$ the number of all points $ x \in X$ such that $ f(x)\equal{}y$ is at most $ 2.$
2010 Contests, 1
The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations
\[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.
2020-IMOC, A2
Find all function $f:\mathbb{R}^+$ $\rightarrow \mathbb{R}^+$ such that: $f(f(x) + y)f(x) = f(xy + 1) \forall x, y \in \mathbb{R}^+$
2000 District Olympiad (Hunedoara), 4
Let $ f:[0,1]\longrightarrow\mathbb{R}_+^* $ be a Riemann-integrable function. Calculate $ \lim_{n\to\infty}\left(-n+\sum_{i=1}^ne^{\frac{1}{n}\cdot f\left(\frac{i}{n}\right)}\right) . $
2006 China Team Selection Test, 3
Given $n$ real numbers $a_1$, $a_2$ $\ldots$ $a_n$. ($n\geq 1$). Prove that there exists real numbers $b_1$, $b_2$ $\ldots$ $b_n$ satisfying:
(a) For any $1 \leq i \leq n$, $a_i - b_i$ is a positive integer.
(b)$\sum_{1 \leq i < j \leq n} (b_i - b_j)^2 \leq \frac{n^2-1}{12}$
2005 SNSB Admission, 1
[b]a)[/b] Let be three vectorial spaces $ E,F,G, $ where $ F $ has finite dimension, and $ E $ is a subspace of $ F. $ Prove that if the function $ T:F\longrightarrow G $ is linear, then
$$ \dim TF -\dim TE\le \dim F-\dim E. $$
[b]b)[/b] Let $ A,B,C $ be matrices of real numbers. Prove that
$$ \text{rang} (AB) +\text{rang} (BC) \le \text{rang} (ABC) +\text{rang} (B) . $$
2007 IMC, 3
Let $ C$ be a nonempty closed bounded subset of the real line and $ f: C\to C$ be a nondecreasing continuous function. Show that there exists a point $ p\in C$ such that $ f(p) \equal{} p$.
(A set is closed if its complement is a union of open intervals. A function $ g$ is nondecreasing if $ g(x)\le g(y)$ for all $ x\le y$.)