This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2023 European Mathematical Cup, 4

Let $f\colon\mathbb{N}\rightarrow\mathbb{N}$ be a function such that for all positive integers $x$ and $y$, the number $f(x)+y$ is a perfect square if and only if $x+f(y)$ is a perfect square. Prove that $f$ is injective. [i]Remark.[/i] A function $f\colon\mathbb{N}\rightarrow\mathbb{N}$ is injective if for all pairs $(x,y)$ of distinct positive integers, $f(x)\neq f(y)$ holds. [i]Ivan Novak[/i]

2015 Indonesia MO Shortlist, A6

Let functions $f, g: \mathbb{R}^+ \to \mathbb{R}^+$ satisfy the following: \[ f(g(x)y + f(x)) = (y+2015)f(x) \] for every $x,y \in \mathbb{R}^+$. (a) Prove that $g(x) = \frac{f(x)}{2015}$ for every $x \in \mathbb{R}^+. $ (b) State an example of function that satisfy the equation above and $f(x), g(x) \ge 1$ for every $x \in \mathbb{R}^+$.

2023 Dutch IMO TST, 4

Find all functions $f: \mathbb{Q^+} \rightarrow \mathbb{Q}$ satisfying $f(x)+f(y)= \left(f(x+y)+\frac{1}{x+y} \right) (1-xy+f(xy))$ for all $x, y \in \mathbb{Q^+}$.

2016 Dutch IMO TST, 4

Find all funtions $f:\mathbb R\to\mathbb R$ such that: $$f(xy-1)+f(x)f(y)=2xy-1$$ for all $x,y\in \mathbb{R}$.

2003 Bulgaria Team Selection Test, 2

Find all $f:R-R$ such that $f(x^2+y+f(y))=2y+f(x)^2$

2012 Swedish Mathematical Competition, 1

The function $f$ satisfies the condition $$f (x + 1) = \frac{1 + f (x)}{1 - f (x)}$$ for all real $x$, for which the function is defined. Determine $f(2012)$, if we known that $f(1000)=2012$.

2002 IMO, 5

Find all functions $f$ from the reals to the reals such that \[ \left(f(x)+f(z)\right)\left(f(y)+f(t)\right)=f(xy-zt)+f(xt+yz) \] for all real $x,y,z,t$.

2005 Austrian-Polish Competition, 6

Determine all monotone functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$, so that for all $x, y \in \mathbb{Z}$ \[f(x^{2005} + y^{2005}) = (f(x))^{2005} + (f(y))^{2005}\]

2020 Dutch BxMO TST, 3

Find all functions $f: R \to R$ that satisfy $$f (x^2y) + 2f (y^2) =(x^2 + f (y)) \cdot f (y)$$ for all $x, y \in R$

2020 IMO Shortlist, N5

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

2022 Balkan MO Shortlist, A6

Determine all functions $f : \mathbb{R}^2 \to\mathbb {R}$ for which \[f(A)+f(B)+f(C)+f(D)=0,\]whenever $A,B,C,D$ are the vertices of a square with side-length one. [i]Ilir Snopce[/i]

2018 Korea Winter Program Practice Test, 1

Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions : 1) $f(x+y)-f(x)-f(y) \in \{0,1\} $ for all $x,y \in \mathbb{R}$ 2) $\lfloor f(x) \rfloor = \lfloor x \rfloor $ for all real $x$.

2010 Brazil Team Selection Test, 4

Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2\] [i]Proposed by Japan[/i]

2011 Today's Calculation Of Integral, 739

Find the function $f(x)$ such that : \[f(x)=\cos x+\int_0^{2\pi} f(y)\sin (x-y)\ dy\]

2023 Brazil EGMO Team Selection Test, 1

Let $\mathbb{Z}_{>0} = \{1, 2, 3, \ldots \}$ be the set of all positive integers. Find all strictly increasing functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that $f(f(n)) = 3n$.

2009 Thailand Mathematical Olympiad, 2

Is there an injective function $f : Z^+ \to Q$ satisfying the equation $f(xy) = f(x) + f(y)$ for all positive integers $x$ and $y$?

PEN K Problems, 17

Find all functions $h: \mathbb{Z}\to \mathbb{Z}$ such that for all $x,y\in \mathbb{Z}$: \[h(x+y)+h(xy)=h(x)h(y)+1.\]

2024 Taiwan TST Round 3, N

For each positive integer $k$, define $r(k)$ as the number of runs of $k$ in base-$2$, where a run is a collection of consecutive $0$s or consecutive $1$s without a larger one containing it. For example, $(11100100)_2$ has $4$ runs, namely $111-00-1-00$. Also, $r(0) = 0$. Given a positive integer $n$, find all functions $f : \mathbb{Z} \rightarrow\mathbb{Z}$ such that \[\sum_{k=0}^{2^n-1} 2^{r(k)}f(k+(-1)^{k} x)=(-1)^{x+n}\text{ for all integer $x$.}\] [i]Proposed by YaWNeeT[/i]

2016 Saudi Arabia IMO TST, 3

Find all functions $f : R \to R$ such that $x[f(x + y) - f (x - y)] = 4y f (x)$ for any real numbers $x, y$.

2017 Harvard-MIT Mathematics Tournament, 3

Let $f: \mathbb{R}\rightarrow \mathbb{R}$ be a function satisfying $f(x)f(y)=f(x-y)$. Find all possible values of $f(2017)$.

2024 India IMOTC, 23

Prove that there exists a function $f : \mathbb{N} \mapsto \mathbb{N}$ that satisfies the following: [color=#FFFFFF]___[/color]1. For all positive integers $m, n$ we have \[\gcd(|f(m)-f(n)|, f(mn)) = f(\gcd(m, n))\] [color=#FFFFFF]___[/color]2. For all positive integers $m$, we have $f(f(m)) = f(m)$. [color=#FFFFFF]___[/color]3. For all positive integers $k$, there exists a positive integer $n$ with $2024^{k} \mid f(n)$. [i]Proposed by MV Adhitya, Archit Manas[/i]

2014 Iran Team Selection Test, 4

Find all functions $f:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$ such that $x,y\in \mathbb{R}^{+},$ \[ f\left(\frac{y}{f(x+1)}\right)+f\left(\frac{x+1}{xf(y)}\right)=f(y) \]

2008 Grigore Moisil Intercounty, 3

Let be two nonzero real numbers $ a,b, $ and a function $ f:\mathbb{R}\longrightarrow [0,\infty ) $ satisfying the functional equation $$ f(x+a+b)+f(x)=f(x+a)+f(x+b) . $$ [b]1)[/b] Prove that $ f $ is periodic if $ a/b $ is rational. [b]2)[/b] If $ a/b $ is not rational, could $ f $ be nonperiodic?

2021 Romania National Olympiad, 4

Let $A$ be a finite set of non-negative integers. Determine all functions $f:\mathbb{Z}_{\ge 0} \to A$ such that \[f(|x-y|)=|f(x)-f(y)|\] for each $x,y\in\mathbb Z_{\ge 0}$. [i]Andrei Bâra[/i]

2023 IFYM, Sozopol, 2

Does there exist a function $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ such that \[ f(ab) = f(a)b + af(b) \] for all $a,b \in \mathbb{Z}_{\geq 0}$ and $f(p) > p^p$ for every prime number $p$? [i] (Here, $\mathbb{Z}_{\geq 0}$ denotes the set of non-negative integers.)[/i]