This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, A1

Find the smallest positive integer value of $N$ such that field $K=\mathbb{Q}(\sqrt{N},\ \sqrt{i+1})$, where $i=\sqrt{-1}$, is Galois extension on $\mathbb{Q}$, then find the Galois group $Gal(K/\mathbb{Q}).$

1973 Miklós Schweitzer, 1

We say that the rank of a group $ G$ is at most $ r$ if every subgroup of $ G$ can be generated by at most $ r$ elements. Prove that here exists an integer $ s$ such that for every finite group $ G$ of rank $ 2$ the commutator series of $ G$ has length less than $ s$. [i]J. Erdos[/i]

2003 SNSB Admission, 2

Let be the polynomial $ f=X^4+X^2\in\mathbb{Z}_2[X] $ Find: a) its degree.. b) the splitting field of $ f $ c) the Galois group of $ f $ (Galois group of its splitting field)

2020 Miklós Schweitzer, 10

Let $f$ be a polynomial of degree $n$ with integer coefficients and $p$ a prime for which $f$, considered modulo $p$, is a degree-$k$ irreducible polynomial over $\mathbb{F}_p$. Show that $k$ divides the degree of the splitting field of $f$ over $\mathbb{Q}$.

2020 India National Olympiad, 5

Infinitely many equidistant parallel lines are drawn in the plane. A positive integer $n \geqslant 3$ is called frameable if it is possible to draw a regular polygon with $n$ sides all whose vertices lie on these lines, and no line contains more than one vertex of the polygon. (a) Show that $3, 4, 6$ are frameable. (b) Show that any integer $n \geqslant 7$ is not frameable. (c) Determine whether $5$ is frameable. [i]Proposed by Muralidharan[/i]

2002 SNSB Admission, 6

Find a Galois extension of the field $ \mathbb{Q} $ whose Galois group is isomorphic with $ \mathbb{Z}/3\mathbb{Z} . $

1977 Miklós Schweitzer, 7

Let $ G$ be a locally compact solvable group, let $ c_1,\ldots, c_n$ be complex numbers, and assume that the complex-valued functions $ f$ and $ g$ on $ G$ satisfy \[ \sum_{k=1}^n c_k f(xy^k)=f(x)g(y) \;\textrm{for all} \;x,y \in G \ \ .\] Prove that if $ f$ is a bounded function and \[ \inf_{x \in G} \textrm{Re} f(x) \chi(x) >0\] for some continuous (complex) character $ \chi$ of $ G$, then $ g$ is continuous. [i]L. Szekelyhidi[/i]

2008 ITest, 100

Let $\alpha$ be a root of $x^6-x-1$, and call two polynomials $p$ and $q$ with integer coefficients $\textit{equivalent}$ if $p(\alpha)\equiv q(\alpha)\pmod3$. It is known that every such polynomial is equivalent to exactly one of $0,1,x,x^2,\ldots,x^{727}$. Find the largest integer $n<728$ for which there exists a polynomial $p$ such that $p^3-p-x^n$ is equivalent to $0$.

1995 Brazil National Olympiad, 5

Show that no one $n$-th root of a rational (for $n$ a positive integer) can be a root of the polynomial $x^5 - x^4 - 4x^3 + 4x^2 + 2$.