Found problems: 622
2024 Junior Balkan MO, 4
Three friends Archie, Billie, and Charlie play a game. At the beginning of the game, each of them has a pile of $2024$ pebbles. Archie makes the first move, Billie makes the second, Charlie makes the third and they continue to make moves in the same order. In each move, the player making the move must choose a positive integer $n$ greater than any previously chosen number by any player, take $2n$ pebbles from his pile and distribute them equally to the other two players. If a player cannot make a move, the game ends and that player loses the game.
$\hspace{5px}$ Determine all the players who have a strategy such that, regardless of how the other two players play, they will not lose the game.
[i]Proposed by Ilija Jovčeski, Macedonia[/i]
2022 SAFEST Olympiad, 3
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or
[*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter.
[i]Proposed by Aron Thomas[/i]
2012 Dutch IMO TST, 2
There are two boxes containing balls. One of them contains $m$ balls, and the other contains $n$ balls, where $m, n > 0$. Two actions are permitted:
(i) Remove an equal number of balls from both boxes.
(ii) Increase the number of balls in one of the boxes by a factor $k$.
Is it possible to remove all of the balls from both boxes with just these two actions,
1. if $k = 2$?
2. if $k = 3$?
Russian TST 2018, P1
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
2024 Baltic Way, 8
Let $a$, $b$, $n$ be positive integers such that $a + b \leq n^2$. Alice and Bob play a game on an (initially uncoloured) $n\times n$ grid as follows:
- First, Alice paints $a$ cells green.
- Then, Bob paints $b$ other (i.e.uncoloured) cells blue.
Alice wins if she can find a path of non-blue cells starting with the bottom left cell and ending with the top right cell (where a path is a sequence of cells such that any two consecutive ones have a common side), otherwise Bob wins. Determine, in terms of $a$, $b$ and $n$, who has a winning strategy.
2019 Austrian Junior Regional Competition, 3
Alice and Bob are playing a year number game.
There will be two game numbers $19$ and $20$ and one starting number from the set $\{9, 10\}$ used. Alice chooses independently her game number and Bob chooses the starting number. The other number is given to Bob. Then Alice adds her game number to the starting number, Bob adds his game number to the result, Alice adds her number of games to the result, etc. The game continues until the number $2019$ is reached or exceeded.
Whoever reaches the number $2019$ wins. If $2019$ is exceeded, the game ends in a draw.
$\bullet$ Show that Bob cannot win.
$\bullet$ What starting number does Bob have to choose to prevent Alice from winning?
(Richard Henner)
1985 All Soviet Union Mathematical Olympiad, 407
Given a cube, a cubic box, that exactly suits for the cube, and six colours. First man paints each side of the cube with its (side's) unique colour. Another man does the same with the box. Prove that the third man can put the cube in the box in such a way, that every cube side will touch the box side of different colour.
2008 Dutch Mathematical Olympiad, 5
We’re playing a game with a sequence of $2008$ non-negative integers.
A move consists of picking a integer $b$ from that sequence, of which the neighbours $a$ and $c$ are positive. We then replace $a, b$ and $c$ by $a - 1, b + 7$ and $c - 1$ respectively. It is not allowed to pick the first or the last integer in the sequence, since they only have one neighbour. If there is no integer left such that both of its neighbours are positive, then there is no move left, and the game ends.
Prove that the game always ends, regardless of the sequence of integers we begin with, and regardless of the moves we make.
2016 India Regional Mathematical Olympiad, 4
A box contains answer $4032$ scripts out of which exactly half have odd number of marks. We choose 2 scripts randomly and, if the scores on both of them are odd number, we add one mark to one of them, put the script back in the box and keep the other script outside. If both scripts have even scores, we put back one of the scripts and keep the other outside. If there is one script with even score and the other with odd score, we put back the script with the odd score and keep the other script outside. After following this procedure a number of times, there are 3 scripts left among
which there is at least one script each with odd and even scores. Find, with proof, the number of scripts with odd scores among the three left.
1998 Brazil National Olympiad, 3
Two players play a game as follows: there $n > 1$ rounds and $d \geq 1$ is fixed. In the first round A picks a positive integer $m_1$, then B picks a positive integer $n_1 \not = m_1$. In round $k$ (for $k = 2, \ldots , n$), A picks an integer $m_k$ such that $m_{k-1} < m_k \leq m_{k-1} + d$. Then B picks an integer $n_k$ such that $n_{k-1} < n_k \leq n_{k-1} + d$. A gets $\gcd(m_k,n_{k-1})$ points and B gets $\gcd(m_k,n_k)$ points. After $n$ rounds, A wins if he has at least as many points as B, otherwise he loses.
For each $(n, d)$ which player has a winning strategy?
2016 Sharygin Geometry Olympiad, 4
The Devil and the Man play a game. Initially, the Man pays some cash $s$ to the Devil. Then he lists some $97$ triples $\{i,j,k\}$ consisting of positive integers not exceeding $100$. After that, the Devil draws some convex polygon $A_1A_2...A_{100}$ with area $100$ and pays to the Man, the sum of areas of all triangles $A_iA_jA_k$. Determine the maximal value of $s$ which guarantees that the Man receives at least as much cash as he paid.
[i]Proposed by Nikolai Beluhov, Bulgaria[/i]
2010 Ukraine Team Selection Test, 9
Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2015 Saudi Arabia IMO TST, 2
Hamza and Majid play a game on a horizontal $3 \times 2015$ white board. They alternate turns, with Hamza going first. A legal move for Hamza consists of painting three unit squares forming a horizontal $1 \times 3$ rectangle. A legal move for Majid consists of painting three unit squares forming a vertical $3\times 1$ rectangle. No one of the two players is allowed to repaint already painted squares. The last player to make a legal move wins. Which of the two players, Hamza or Majid, can guarantee a win no matter what strategy his opponent chooses and what is his strategy to guarantee a win?
Lê Anh Vinh
2020 Durer Math Competition Finals, 6
(Game) At the beginning of the game the organisers place $4$ piles of paper disks onto the table. The player who is in turn takes away a pile, then divides one of the remaining piles into two nonempty piles. Whoever is unable to move, loses.
[i]Defeat the organisers in this game twice in a row! A starting position will be given and then you can decide whether you want to go first or second.[/i]
2019 ELMO Shortlist, C2
Adithya and Bill are playing a game on a connected graph with $n > 2$ vertices, two of which are labeled $A$ and $B$, so that $A$ and $B$ are distinct and non-adjacent and known to both players. Adithya starts on vertex $A$ and Bill starts on $B$. Each turn, both players move simultaneously: Bill moves to an adjacent vertex, while Adithya may either move to an adjacent vertex or stay at his current vertex. Adithya loses if he is on the same vertex as Bill, and wins if he reaches $B$ alone. Adithya cannot see where Bill is, but Bill can see where Adithya is. Given that Adithya has a winning strategy, what is the maximum possible number of edges the graph may have? (Your answer may be in terms of $n$.)
[i]Proposed by Steven Liu[/i]
2021 Durer Math Competition Finals, 6
(Game) In an Indian reservatory there are $15$ totem poles arranged according to the left figure. Silent Stream and Red Fire used to play the following game: In turns they stretch ropes between two-two poles in such a way that every stretched rope is parallel to a side of the big triangle and no rope can go along a pole that is already touched by another rope. Furthermore, if instead of a rope one can stretch out a straight line extension of the rope, then one should stretch out this extension. The one who cannot stretch out more rope according to the rules loses.
[i]Win two games in a row against the organizers! You can decide that you want to start or to be the second player. The figure on the right depicts the first three steps of a game. First Silent Stream stretches the blue rope, then Red Fire stretches the red one, finally Silent Stream stretches the blue one.[/i] [img]https://cdn.artofproblemsolving.com/attachments/f/8/3b8b9e38a8a477da288566ecb26036bfc7e615.png[/img]
1982 Tournament Of Towns, (029) 3
$60$ symbols, each of which is either $X$ or $O$, are written consecutively on a strip of paper. This strip must then be cut into pieces with each piece containing symbols symmetric about their centre, e.g. $O, XX, OXXXXX, XOX$, etc.
(a) Prove that there is a way of cutting the strip so that there are no more than $24$ such pieces.
(b) Give an example of such an arrangement of the signs for which the number of pieces cannot be less than $15$.
(c) Try to improve the result of (b).
2003 Croatia National Olympiad, Problem 3
The natural numbers $1$ through $2003$ are arranged in a sequence. We repeatedly perform the following operation: If the first number in the sequence is $k$, the order of the first $k$ terms is reversed. Prove that after several operations number $1$ will occur on the first place.
1998 Bundeswettbewerb Mathematik, 1
In the playboard shown beside, players $A$ and $B$ alternately fill the empty cells by integers, player $A$ starting. In each step the empty cell and the integer can be chosen arbitrarily. Show that player $A$ can always achieve that all the equalities hold after the last step.
[img]https://cdn.artofproblemsolving.com/attachments/c/0/524195b1a8ab8457b72005a162f8124c2b1bd2.png[/img]
2023 Junior Balkan Mathematical Olympiad, 3
Alice and Bob play the following game on a $100\times 100$ grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from $1$ to $100^2$ that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these $100$ numbers. Bob computes the sum of the numbers in each column, and his score is the maximum of these $100$ numbers. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins.
Find if one of the players has a winning strategy, and if so which player has a winning strategy.
[i]Théo Lenoir, France[/i]
2021 OMpD, 4
Let $n$ be a positive integer. Lavi Dopes has two boards $n \times n$. On the first board, he writes an integer in each of his $n^2$ squares (the written numbers are not necessarily distinct). On the second board, he writes, on each square, the sum of the numbers corresponding, on the first board, to that square and to all its adjacent squares (that is, those that share a common vertex). For example, if $n = 3$ and if Lavi Dopes writes the numbers on the first board, as shown below, the second board will look like this.
Next, Davi Lopes receives only the second board, and from it, he tries to discover the numbers written by Lavi Dopes on the first board.
(a) If $n = 4$, is it possible that Davi Lopes always manages to find the numbers written by Lavi Dopes on the first board?
(b) If $n = 5$, is it possible that Davi Lopes always manages to find the numbers written by Lavi Dopes on the first board?
2021 Denmark MO - Mohr Contest, 5
A board consists of $2021 \times 2021$ squares all of which are white, except for one corner square which is black. Alma and Bertha play the following game. At the beginning, there is a piece on the black square. In each turn, the player must move the piece to a new square in the same row or column as the one in which the piece is currently. All squares that the piece moves across, including the ending square but excluding the starting square, must be white, and all squares that the piece moves across, including the ending square, become black by this move. Alma begins, and the first player unable to move loses. Which player may prepare a strategy which secures her the victory?
[img]https://cdn.artofproblemsolving.com/attachments/a/7/270d82f37b729bfe661f8a92cea8be67e5625c.png[/img]
2000 Tournament Of Towns, 4
Give and Take divide $100$ coins between themselves as follows. In each step, Give chooses a handful of coins from the heap, and Take decides who gets this handful. This is repeated until all coins have been taken, or one of them has $9$ handfuls. In the latter case, the other gets all the remaining coins. What is the largest number of coins that Give can be sure of getting no matter what Take does?
(A Shapovalov)
2024 IRN-SGP-TWN Friendly Math Competition, 6
Let $\alpha, \beta$ be two rational numbers strictly between 0 and 1. Alice and Bob play a game. At the start of the game, Alice chooses a positive integer $n$. Knowing that, Bob then chooses a positive integer $T$. They then do the following for $T$ rounds: at the $i$th round, Bob chooses a set $X_i$ of $n$ positive integers that form a complete residue system modulo $n$. Then Alice chooses a subset $Y_i$ of $X_i$ such that the sum of elements in $Y_i$ is at most $\alpha$ times the sum of elements in $X_i$. After the $T$ rounds, Alice wins if it is possible to pick an integer $s$ between 0 and $n-1$ such that there are at least $\beta T$ positive integers among the elements in $Y_1, Y_2, . . . , Y_T$ (counted with multiplicities) that are equal to $s \pmod n$, and Bob wins otherwise.
Find all pairs $(\alpha, \beta)$ of rational numbers strictly between 0 and 1 such that Alice has a winning strategy.
[i]Proposed by Hans[/i]
2016 Ukraine Team Selection Test, 1
Consider a regular polygon $A_1A_2\ldots A_{6n+3}$. The vertices $A_{2n+1}, A_{4n+2}, A_{6n+3}$ are called [i]holes[/i]. Initially there are three pebbles in some vertices of the polygon, which are also vertices of equilateral triangle. Players $A$ and $B$ take moves in turn. In each move, starting from $A$, the player chooses pebble and puts it to the next vertex clockwise (for example, $A_2\rightarrow A_3$, $A_{6n+3}\rightarrow A_1$). Player $A$ wins if at least two pebbles lie in holes after someone's move. Does player $A$ always have winning strategy?
[i]Proposed by Bohdan Rublov [/i]