This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

2016 Germany Team Selection Test, 3

In the beginning there are $100$ integers in a row on the blackboard. Kain and Abel then play the following game: A [i]move[/i] consists in Kain choosing a chain of consecutive numbers; the length of the chain can be any of the numbers $1,2,\dots,100$ and in particular it is allowed that Kain only chooses a single number. After Kain has chosen his chain of numbers, Abel has to decide whether he wants to add $1$ to each of the chosen numbers or instead subtract $1$ from of the numbers. After that the next move begins, and so on. If there are at least $98$ numbers on the blackboard that are divisible by $4$ after a move, then Kain has won. Prove that Kain can force a win in a finite number of moves.

Russian TST 2016, P1

There are 100 saucers in a circle. Two people take turns putting marmalade of various colors in empty saucers. The first person can choose one or three empty saucers and fill each of them with marmalade of arbitrary color. The second one can choose one empty saucer and fill it with marmalade of arbitrary color. There should not be two adjacent saucers with marmalade of the same color. The game ends when all the saucers are filled. The loser is the last player to introduce a new color of marmalade into the game. Who has a winning strategy?

Kvant 2019, M2558

$2019$ point grasshoppers sit on a line. At each move one of the grasshoppers jumps over another one and lands at the point the same distance away from it. Jumping only to the right, the grasshoppers are able to position themselves so that some two of them are exactly $1$ mm apart. Prove that the grasshoppers can achieve the same, jumping only to the left and starting from the initial position. (Sergey Dorichenko)

2021 Dutch IMO TST, 1

Let $m$ and $n$ be natural numbers with $mn$ even. Jetze is going to cover an $m \times n$ board (consisting of $m$ rows and $n$ columns) with dominoes, so that every domino covers exactly two squares, dominos do not protrude or overlap, and all squares are covered by a domino. Merlin then moves all the dominoe color red or blue on the board. Find the smallest non-negative integer $V$ (in terms of $m$ and $n$) so that Merlin can always ensure that in each row the number squares covered by a red domino and the number of squares covered by a blue one dominoes are not more than $V$, no matter how Jetze covers the board.

2017 Israel National Olympiad, 7

A table with $m$ rows and $n$ columns is given. In each cell of the table an integer is written. Heisuke and Oscar play the following game: at the beginning of each turn, Heisuke may choose to swap any two columns. Then he chooses some rows and writes down a new row at the bottom of the table, with each cell consisting the sum of the corresponding cells in the chosen rows. Oscar then deletes one row chosen by Heisuke (so that at the end of each turn there are exactly $m$ rows). Then the next turn begins and so on. Prove that Heisuke can assure that, after some finite amount of turns, no number in the table is smaller than the number to the number on his right. Example: If we begin with $(1,1,1),(6,5,4),(9,8,7)$, Heisuke may choose to swap the first and third column to get $(1,1,1),(4,5,6),(7,8,9)$. Then he chooses the first and second rows to obtain $(1,1,1),(4,5,6),(7,8,9),(5,6,7)$. Then Oscar has to delete either the first or the second row, let's say the second. We get $(1,1,1),(7,8,9),(5,6,7)$ and Heisuke wins.

Kvant 2020, M1

In a country, the time for presidential elections has approached. There are exactly 20 million voters in the country, of which only one percent supports the current president, Miraflores. Naturally, he wants to be elected again, but on the other hand, he wants the elections to seem democratic. Miraflores established the following voting process: all the voters are divided into several equal groups, then each of these groups is again divided into a number of equal groups, and so on. In the smallest groups, a representative is chosen. Then, the chosen electors choose representatives in the second-smallest groups, to vote in an even larger group, and so on. Finally, the representatives of the largest groups choose the president. Miraflores divides voters into groups as he wants and instructs his supporters how to vote. Will he be able to organize the elections in such a way that he will be elected president? (If the votes are equal, the opposition wins.) [i]From the 32nd Moscow Mathematical Olympiad[/i]

2020 Iran Team Selection Test, 2

Alice and Bob take turns alternatively on a $2020\times2020$ board with Alice starting the game. In every move each person colours a cell that have not been coloured yet and will be rewarded with as many points as the coloured cells in the same row and column. When the table is coloured completely, the points determine the winner. Who has the wining strategy and what is the maximum difference he/she can grantees? [i]Proposed by Seyed Reza Hosseini[/i]

2008 Tournament Of Towns, 2

Alice and Brian are playing a game on the real line. To start the game, Alice places a checker on a number $x$ where $0 < x < 1$. In each move, Brian chooses a positive number $d$. Alice must move the checker to either $x + d$ or $x - d$. If it lands on $0$ or $1$, Brian wins. Otherwise the game proceeds to the next move. For which values of $x$ does Brian have a strategy which allows him to win the game in a finite number of moves?

2020 Australian Maths Olympiad, 2

Amy and Bec play the following game. Initially, there are three piles, each containing $2020$ stones. The players take turns to make a move, with Amy going first. Each move consists of choosing one of the piles available, removing the unchosen pile(s) from the game, and then dividing the chosen pile into $2$ or $3$ non-empty piles. A player loses the game if he/she is unable to make a move. Prove that Bec can always win the game, no matter how Amy plays.

Russian TST 2018, P2

Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector). At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy? [i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]

2019 Tuymaada Olympiad, 8

Andy, Bess, Charley and Dick play on a $1000 \times 1000$ board. They make moves in turn: Andy first, then Bess, then Charley and finally Dick, after that Andy moves again and so on. At each move a player must paint several unpainted squares forming $2 \times 1, 1 \times 2, 1 \times 3$, or $3 \times 1$ rectangle. The player that cannot move loses. Prove that some three players can cooperate to make the fourth player lose.

2010 Rioplatense Mathematical Olympiad, Level 3, 3

Alice and Bob play the following game. To start, Alice arranges the numbers $1,2,\ldots,n$ in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's [i]turn[/i] consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number $k$ at most $k$ times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer $n$, determine who has a winning strategy.

2024 Iran MO (2nd Round), 2

Sahand and Gholam play on a $1403\times 1403$ table. Initially all the unit square cells are white. For each row and column there is a key for it (totally 2806 keys). Starting with Sahand players take turn alternatively pushing a button that has not been pushed yet, until all the buttons are pushed. When Sahand pushes a button all the cells of that row or column become black, regardless of the previous colors. When Gholam pushes a button all the cells of that row or column become red, regardless of the previous colors. Finally, Gholam's score equals the number of red squares minus the number of black squares and Sahand's score equals the number of black squares minus the number of red squares. Determine the minimum number of scores Gholam can guarantee without if both players play their best moves.

1991 All Soviet Union Mathematical Olympiad, 541

An investigator works out that he needs to ask at most $91$ questions on the basis that all the answers will be yes or no and all will be true. The questions may depend upon the earlier answers. Show that he can make do with $105$ questions if at most one answer could be a lie.

2014 Israel National Olympiad, 4

We are given a row of $n\geq7$ tiles. In the leftmost 3 tiles, there is a white piece each, and in the rightmost 3 tiles, there is a black piece each. The white and black players play in turns (the white starts). In each move, a player may take a piece of their color, and move it to an adjacent tile, so long as it's not occupied by a piece of the [u]same color[/u]. If the new tile is empty, nothing happens. If the tile is occupied by a piece of the [u]opposite color[/u], both pieces are destroyed (both white and black). The player who destroys the last two pieces wins the game. Which player has a winning strategy, and what is it? (The answer may depend on $n$)

2020 European Mathematical Cup, 3

Let $p$ be a prime number. Troy and Abed are playing a game. Troy writes a positive integer $X$ on the board, and gives a sequence $(a_n)_{n\in\mathbb{N}}$ of positive integers to Abed. Abed now makes a sequence of moves. The $n$-th move is the following: $$\text{ Replace } Y \text{ currently written on the board with either } Y + a_n \text{ or } Y \cdot a_n.$$ Abed wins if at some point the number on the board is a multiple of $p$. Determine whether Abed can win, regardless of Troy’s choices, if $a) p = 10^9 + 7$; $b) p = 10^9 + 9$. [i]Remark[/i]: Both $10^9 + 7$ and $10^9 + 9$ are prime. [i]Proposed by Ivan Novak[/i]

2005 Tournament of Towns, 6

John and James wish to divide $25$ coins, of denominations $1, 2, 3, \ldots , 25$ kopeks. In each move, one of them chooses a coin, and the other player decides who must take this coin. John makes the initial choice of a coin, and in subsequent moves, the choice is made by the player having more kopeks at the time. In the event that there is a tie, the choice is made by the same player in the preceding move. After all the coins have been taken, the player with more kokeps wins. Which player has a winning strategy? [i](6 points)[/i]

2021 JBMO Shortlist, N7

Alice chooses a prime number $p > 2$ and then Bob chooses a positive integer $n_0$. Alice, in the first move, chooses an integer $n_1 > n_0$ and calculates the expression $s_1 = n_0^{n_1} + n_1^{n_0}$; then Bob, in the second move, chooses an integer $n_2 > n_1$ and calculates the expression $s_2 = n_1^{n_2} + n_2^{n_1}$; etc. one by one. (Each player knows the numbers chosen by the other in the previous moves.) The winner is the one who first chooses the number $n_k$ such that $p$ divides $s_k(s_1 + 2s_2 + · · · + ks_k)$. Who has a winning strategy? Proposed by [i]Borche Joshevski, Macedonia[/i]

2019 Singapore MO Open, 3

A robot is placed at point $P$ on the $x$-axis but different from $(0,0)$ and $(1,0)$ and can only move along the axis either to the left or to the right. Two players play the following game. Player $A$ gives a distance and $B$ gives a direction and the robot will move the indicated distance along the indicated direction. Player $A$ aims to move the robot to either $(0,0)$ or $(1,0)$. Player $B$'s aim is to stop $A$ from achieving his aim. For which $P$ can $A$ win?

2024 Austrian MO National Competition, 3

Initially, the numbers $1, 2, \dots, 2024$ are written on a blackboard. Trixi and Nana play a game, taking alternate turns. Trixi plays first. The player whose turn it is chooses two numbers $a$ and $b$, erases both, and writes their (possibly negative) difference $a-b$ on the blackboard. This is repeated until only one number remains on the blackboard after $2023$ moves. Trixi wins if this number is divisible by $3$, otherwise Nana wins. Which of the two has a winning strategy? [i](Birgit Vera Schmidt)[/i]

2007 Mongolian Mathematical Olympiad, Problem 5

Tags: game
Given a $n\times n$ table with non-negative real entries such that the sums of entries in each column and row are equal, a player plays the following game: The step of the game consists of choosing $n$ cells, no two of which share a column or a row, and subtracting the same number from each of the entries of the $n$ cells, provided that the resulting table has all non-negative entries. Prove that the player can change all entries to zeros.

2018 May Olympiad, 2

On a board $4\times 4$ the numbers from $1$ to $16$ are written, one in each box. Andres and Pablo choose four numbers each. Andrés chooses the biggest of each row and Pablo, the biggest of each column. The same number can be chosen by both. Then they are removed from the board all chosen numbers. What is the greatest value that the sum of the numbers can have what are left on the board?

1991 Bulgaria National Olympiad, Problem 6

White and black checkers are put on the squares of an $n\times n$ chessboard $(n\ge2)$ according to the following rule. Initially, a black checker is put on an arbitrary square. In every consequent step, a white checker is put on a free square, whereby all checkers on the squares neighboring by side are replaced by checkers of the opposite colors. This process is continued until there is a checker on every square. Prove that in the final configuration there is at least one black checker.

2019 China Team Selection Test, 6

Let $k$ be a positive real. $A$ and $B$ play the following game: at the start, there are $80$ zeroes arrange around a circle. Each turn, $A$ increases some of these $80$ numbers, such that the total sum added is $1$. Next, $B$ selects ten consecutive numbers with the largest sum, and reduces them all to $0$. $A$ then wins the game if he/she can ensure that at least one of the number is $\geq k$ at some finite point of time. Determine all $k$ such that $A$ can always win the game.

1985 Bundeswettbewerb Mathematik, 1

Sixty-four dice with the numbers ”one” to ”six” are placed on one table and formed into a square with eight horizontal and eight vertical rows of cubes pushed together. By rotating the dice, while maintaining their place, we want to finally have all sixty-four dice the "one" points upwards. Each dice however, may not be turned individually, but only every eight dice in a horizontal or vertical row together by $90^o$ to the longitudinal axis of this row may turn. Prove that it is always possible to solve the dice by repeatedly applying the permitted type of rotation to the required end position.