This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

2021 Moldova Team Selection Test, 10

On a board there are written the integers from $1$ to $119$. Two players, $A$ and $B$, make a move by turn. A $move$ consists in erasing $9$ numbers from the board. The player after whose move two numbers remain on the board wins and his score is equal with the positive difference of the two remaining numbers. The player $A$ makes the first move. Find the highest integer $k$, such that the player $A$ can be sure that his score is not smaller than $k$.

2006 MOP Homework, 4

For positive integers $t,a$, and $b$, Lucy and Windy play the $(t,a,b)$- [i]game [/i] defined by the following rules. Initially, the number $t$ is written on a blackboard. On her turn, a player erases the number on the board and writes either the number $t - a$ or $t - b$ on the board. Lucy goes first and then the players alternate. The player who first reaches a negative losses the game. Prove that there exist infinitely many values of $t$ in which Lucy has a winning strategy for all pairs $(a, b)$ with $a + b = 2005$.

2021 IMO Shortlist, C6

A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or [*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter. [i]Proposed by Aron Thomas[/i]

2017 May Olympiad, 4

Let $n$ be an even integer greater than $2$. On the vertices of a regular polygon with n sides we can place red or blue chips. Two players, $A$ and $B$, play alternating turns of the next mode: each player, on their turn, chooses two vertices that have no tiles and places on one of them a red chip and in the other a blue chip. The goal of $A$ is to get three vertices consecutive with tiles of the same color. $B$'s goal is to prevent this from happening. To the beginning of the game there are no tiles in any of the vertices. Show that regardless of who starts to play, Player $B$ can always achieve his goal.

2014 Contests, 2

Ahmad and Salem play the following game. Ahmad writes two integers (not necessarily different) on a board. Salem writes their sum and product. Ahmad does the same thing: he writes the sum and product of the two numbers which Salem has just written. They continue in this manner, not stopping unless the two players write the same two numbers one after the other (for then they are stuck!). The order of the two numbers which each player writes is not important. Thus if Ahmad starts by writing $3$ and $-2$, the first five moves (or steps) are as shown: (a) Step 1 (Ahmad) $3$ and $-2$ (b) Step 2 (Salem) $1$ and $-6$ (c) Step 3 (Ahmad) $-5$ and $-6$ (d) Step 4 (Salem) $-11$ and $30$ (e) Step 5 (Ahmad) $19$ and $-330$ (i) Describe all pairs of numbers that Ahmad could write, and ensure that Salem must write the same numbers, and so the game stops at step 2. (ii) What pair of integers should Ahmad write so that the game finishes at step 4? (iii) Describe all pairs of integers which Ahmad could write at step 1, so that the game will finish after finitely many steps. (iv) Ahmad and Salem decide to change the game. The first player writes three numbers on the board, $u, v$ and $w$. The second player then writes the three numbers $u + v + w,uv + vw + wu$ and $uvw$, and they proceed as before, taking turns, and using this new rule describing how to work out the next three numbers. If Ahmad goes first, determine all collections of three numbers which he can write down, ensuring that Salem has to write the same three numbers at the next step.

2012 Bundeswettbewerb Mathematik, 2

On a round table, $n$ bowls are arranged in a circle. Anja walks around the table clockwise, placing marbles in the bowls according to the following rule: She places a marble in any first bowl, then goes one bowl further and puts a marble in there. Then she goes two shells before putting another marble, then she goes three shells, etc. If there is at least one marble in each shell, she stops. For which $n$ does this occur?

2018 Junior Balkan Team Selection Tests - Romania, 3

Alina and Bogdan play the following game. They have a heap and $330$ stones in it. They take turns. In one turn it is allowed to take from the heap exactly $1$, exactly $n$ or exactly $m$ stones. The player who takes the last stone wins. Before the beginning Alina says the number $n$, ($1 < n < 10$). After that Bogdan says the number $m$, ($m \ne n, 1 < m < 10$). Alina goes first. Which of the two players has a winning strategy? What if initially there are 2018 stones in the heap? adapted from a Belarus Olympiad problem

2022 New Zealand MO, 4

On a table, there is an empty bag and a chessboard containing exactly one token on each square. Next to the table is a large pile that contains an unlimited supply of tokens. Using only the following types of moves what is the maximum possible number of tokens that can be in the bag? $\bullet$ Type 1: Choose a non-empty square on the chessboard that is not in the rightmost column. Take a token from this square and place it, along with one token from the pile, on the square immediately to its right. $\bullet$ Type 2: Choose a non-empty square on the chessboard that is not in the bottommost row. Take a token from this square and place it, along with one token from the pile, on the square immediately below it. $\bullet$ Type 3: Choose two adjacent non-empty squares. Remove a token from each and put them both into the bag.

2005 Federal Math Competition of S&M, Problem 2

Tags: game
Every square of a $3\times3$ board is assigned a sign $+$ or $-$. In every move, one square is selected and the signs are changed in the selected square and all the neighboring squares (two squares are neighboring if they have a common side). Is it true that, no matter how the signs were initially distributed, one can obtain a table in which all signs are $-$ after finitely many moves?

2012 IMO Shortlist, C4

Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules: [b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box. [b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box. Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.

2018 JBMO Shortlist, C3

The cells of a $8 \times 8$ table are initially white. Alice and Bob play a game. First Alice paints $n$ of the fields in red. Then Bob chooses $4$ rows and $4$ columns from the table and paints all fields in them in black. Alice wins if there is at least one red field left. Find the least value of $n$ such that Alice can win the game no matter how Bob plays.

2025 Bangladesh Mathematical Olympiad, P7

Yamin and Tamim are playing a game with subsets of $\{1, 2, \ldots, n\}$ where $n \geq 3$. [list] [*] Tamim starts the game with the empty set. [*] On Yamin's turn, he adds a proper non-empty subset of $\{1, 2, \ldots, n\}$ to his collection $F$ of blocked sets. [*] On Tamim's turn, he adds or removes a positive integer less than or equal to $n$ to or from their set but Tamim can never add or remove an element so that his set becomes one of the blocked sets in $F$. [/list] Tamim wins if he can make his set to be $\{1, 2, \ldots, n\}$. Yamin wins if he can stop Tamim from doing so. Yamin goes first and they alternate making their moves. Does Tamim have a winning strategy? [i]Proposed by Ahmed Ittihad Hasib[/i]

2018 Estonia Team Selection Test, 9

Let $m$ and $n$ be positive integers. Player $A$ has a field of $m \times n$, and player $B$ has a $1 \times n$ field (the first is the number of rows). On the first move, each player places on each square of his field white or black chip as he pleases. At each next on the move, each player can change the color of randomly chosen pieces on your field to the opposite, provided that in no row for this move will not change more than one chip (it is allowed not to change not a single chip). The moves are made in turn, player $A$ starts. Player $A$ wins if there is such a position that in the only row player $B$'s squares, from left to right, are the same as in some row of player's field $A$. Prove that player $A$ has the ability to win for any game of player $B$ if and only if $n <2m$.

1985 All Soviet Union Mathematical Olympiad, 409

If there are four numbers $(a,b,c,d)$ in four registers of the calculating machine, they turn into $(a-b,b-c,c-d,d-a)$ numbers whenever you press the button. Prove that if not all the initial numbers are equal, machine will obtain at least one number more than $1985$ after some number of the operations.

2020 Durer Math Competition Finals, 8

The integers $1, 2, 3, 4, 5$ and $6$ are written on a board. You can perform the following kind of move: select two of the numbers, say $a$ and $b$, such that $4a - 2b$ is nonnegative; erase $a$ and $b$, then write down $4a - 2b$ on the board (hence replacing two of the numbers by just one). Continue performing such moves until only one number remains on the board. What is the smallest possible positive value of this last remaining number?

2019 Belarus Team Selection Test, 3.3

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

Kvant 2024, M2801

Yuri is looking at the great Mayan table. The table has $200$ columns and $2^{200}$ rows. Yuri knows that each cell of the table depicts the sun or the moon, and any two rows are different (i.e. differ in at least one column). Each cell of the table is covered with a sheet. The wind has blown aways exactly two sheets from each row. Could it happen that now Yuri can find out for at least $10000$ rows what is depicted in each of them (in each of the columns)? [i]Proposed by I. Bogdanov, K. Knop[/i]

2018 Switzerland - Final Round, 10

Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed: $$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$. The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this. Prove that Eduardo has a winning strategy. [i]Proposed by Amine Natik, Morocco[/i]

1999 ITAMO, 4

Albert and Barbara play the following game. On a table there are $1999$ sticks, and each player in turn removes some of them: at least one stick, but at most half of the currently remaining sticks. The player who leaves just one stick on the table loses the game. Barbara moves first. Decide which player has a winning strategy and describe that strategy.

2004 Bosnia and Herzegovina Team Selection Test, 4

On competition which has $16$ teams, it is played $55$ games. Prove that among them exists $3$ teams such that they have not played any matches between themselves.

2016 Saudi Arabia BMO TST, 4

On a chessboard $5 \times 9$ squares, the following game is played. Initially, a number of frogs are randomly placed on some of the squares, no square containing more than one frog. A turn consists of moving all of the frogs subject to the following rules: $\bullet$ Each frog may be moved one square up, down, left, or right; $\bullet$ If a frog moves up or down on one turn, it must move left or right on the next turn, and vice versa; $\bullet$ At the end of each turn, no square can contain two or more frogs. The game stops if it becomes impossible to complete another turn. Prove that if initially $33$ frogs are placed on the board, the game must eventually stop. Prove also that it is possible to place $32$ frogs on the board so that the game can continue forever.

2022/2023 Tournament of Towns, P5

Alice has 8 coins. She knows for sure only that 7 of these coins are genuine and weigh the same, while the remaining one is counterfeit and is either heavier or lighter than any of the other 7. Bob has a balance scale. The scale shows which plate is heavier but does not show by how much. For each measurement, Alice pays Bob beforehand a fee of one coin. If a genuine coin has been paid, Bob tells Alice the correct weighing outcome, but if a counterfeit coin has been paid, he gives a random answer. Alice wants to identify 5 genuine coins and not to give any of these coins to Bob. Can Alice achieve this result for sure?