Found problems: 622
2014 Taiwan TST Round 2, 3
Fix an integer $k>2$. Two players, called Ana and Banana, play the following game of numbers. Initially, some integer $n \ge k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number $m$ just written on the blackboard and replaces it by some number $m'$ with $k \le m' < m$ that is coprime to $m$. The first player who cannot move anymore loses.
An integer $n \ge k $ is called good if Banana has a winning strategy when the initial number is $n$, and bad otherwise.
Consider two integers $n,n' \ge k$ with the property that each prime number $p \le k$ divides $n$ if and only if it divides $n'$. Prove that either both $n$ and $n'$ are good or both are bad.
2024 Durer Math Competition Finals, 6
On a $1\times n$ board there are $n-1$ separating edges between neighbouring cells. Initially, none of the edges contain matches. During a move of size $0 < k < n$ a player chooses a $1\times k$ sub-board which contains no matches inside, and places a matchstick on all of the separating edges bordering the sub-board that don’t already have one.
A move is considered legal if at least one matchstick can be placed and if either $k = 1$ or $k{}$ is divisible by 4. Two players take turns making moves, the player in turn must choose one of the available legal moves of the largest size $0 < k < n$ and play it. If someone does not have a legal move, the game ends and that player loses.
[i]Beat the organisers twice in a row in this game! First the organisers determine the value of $n{}$, then you get to choose whether you want to play as the first or the second player.[/i]
2018 SIMO, Q1
Sheldon and Bella play a game on an infinite grid of cells. On each of his turns, Sheldon puts one of the following tetrominoes (reflections and rotations aren't permitted)
[asy]
size(200);
draw((0, 0)--(1, 0)--(1, 2)--(0, 2)--cycle);
draw((1, 1)--(2, 1)--(2, 3)--(1, 3)--cycle);
draw((0,1)--(1,1));
draw((1,2)--(2,2));
draw((5, 0.5)--(6, 0.5)--(6, 1.5)--(5, 1.5)--cycle);
draw((6, 0.5)--(7, 0.5)--(7, 1.5)--(6, 1.5)--cycle);
draw((6, 1.5)--(7, 1.5)--(7, 2.5)--(6, 2.5)--cycle);
draw((7, 1.5)--(8, 1.5)--(8, 2.5)--(7, 2.5)--cycle);
[/asy]
somewhere on the grid without overlap. Then, Bella colors that tetromino such that it has a different color from any other tetromino that shares a side with it. After $2631$ such moves by each player, the game ends, and Sheldon's score is the number of colors used by Bella.
What's the maximum $N$ such that Sheldon can guarantee that his score will be at least $N$?
1987 Tournament Of Towns, (163) 7
A certain town is represented as an infinite plane, which is divided by straight lines into squares. The lines are streets, while the squares are blocks. Along a certain street there stands a policeman on each $100$th intersection . Somewhere in the town there is a bandit , whose position and speed are unknown, but he can move only along the streets. The aim of the police is to see the bandit . Does there exist an algorithm available to the police to enable them to achieve their aim?
(A. Andjans, Riga)
2018 Ukraine Team Selection Test, 3
Consider the set of all integer points in $Z^3$. Sasha and Masha play such a game. At first, Masha marks an arbitrary point. After that, Sasha marks all the points on some a plane perpendicular to one of the coordinate axes and at no point, which Masha noted. Next, they continue to take turns (Masha can't to select previously marked points, Sasha cannot choose the planes on which there are points said Masha). Masha wants to mark $n$ consecutive points on some line that parallel to one of the coordinate axes, and Sasha seeks to interfere with it. Find all $n$, in which Masha can achieve the desired result.
Russian TST 2019, P2
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$.
Prove that Sisyphus cannot reach the aim in less than
\[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]
turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
2022 Federal Competition For Advanced Students, P2, 3
Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following:
The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation.
Lisa repeats this until she gets a number for the first time was on the board.
(a) Show that the sequence of moves always ends.
(b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board?
Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$.
Since Lisa gets $21$ for the second time, the turn order ends.
[i](Stephan Pfannerer)[/i]
2022 Macedonian Mathematical Olympiad, Problem 4
Sofia and Viktor are playing the following game on a $2022 \times 2022$ board:
- Firstly, Sofia covers the table completely by dominoes, no two are overlapping and all are inside the table;
- Then Viktor without seeing the table, chooses a positive integer $n$;
- After that Viktor looks at the table covered with dominoes, chooses and fixes $n$ of them;
- Finally, Sofia removes the remaining dominoes that aren't fixed and tries to recover the table with dominoes differently from before.
If she achieves that, she wins, otherwise Viktor wins. What is the minimum number $n$ for which Viktor can always win, no matter the starting covering of dominoes.
[i]Proposed by Viktor Simjanoski[/i]
2018 Iran Team Selection Test, 2
Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector).
At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy?
[i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]
2006 QEDMO 2nd, 9
In a one-player game, you have three cards. At the beginning, a nonnegative integer is written on each of the cards, and the sum of these three integers is $2006$. At each step, you can select two of the three chards, subtract $1$ from the integer written on each of these two cards - as long as the resulting integers are still nonnegative -, and add $1$ to the integer written on the third card. You play this game until you can’t perform a step anymore because two of the cards have $0$’s written on them. Assume that, at this moment, the third card has a $1$ written on it. Prove that I can tell you which card contains the $1$ without knowing how exactly you proceeded in your game, but only knowing the starting configuration (i. e., the numbers written on the cards at the beginning of the game) and the fact that at the end, you were left with two $0$’s and a $1$.
2025 India National Olympiad, P5
Greedy goblin Griphook has a regular $2000$-gon, whose every vertex has a single coin. In a move, he chooses a vertex, removes one coin each from the two adjacent vertices, and adds one coin to the chosen vertex, keeping the remaining coin for himself. He can only make such a move if both adjacent vertices have at least one coin. Griphook stops only when he cannot make any more moves. What is the maximum and minimum number of coins he could have collected?
[i]Proposed by Pranjal Srivastava and Rohan Goyal[/i]
1981 Tournament Of Towns, (011) 5
a) A game is played on an infinite plane. There are fifty one pieces, one “wolf” and $50$ “sheep”. There are two players. The first commences by moving the wolf. Then the second player moves one of the sheep, the first player moves the wolf, the second player moves a sheep, and so on. The wolf and the sheep can move in any direction through a distance of up to one metre per move. Is it true that for any starting position the wolf will be able to capture at least one sheep?
b) A game is played on an infinite plane. There are two players. One has a piece known as a “wolf”, while the other has $K$ pieces known as “sheep”. The first player moves the wolf, then the second player moves a sheep, the first player moves the wolf again, the second player moves a sheep, and so on. The wolf and the sheep can move in any direction, with a maximum distance of one metre per move. Is it true that for any value of $K$ there exists an initial position from which the wolf can not capture any sheep?
PS. (a) was the junior version, (b) the senior one
1974 IMO, 1
Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).
2019 Switzerland Team Selection Test, 6
Let $(a,b)$ be a pair of natural numbers. Henning and Paul play the following game. At the beginning there are two piles of $a$ and $b$ coins respectively. We say that $(a,b)$ is the [i]starting position [/i]of the game. Henning and Paul play with the following rules:
$\bullet$ They take turns alternatively where Henning begins.
$\bullet$ In every step each player either takes a positive integer number of coins from one of the two piles or takes same natural number of coins from both piles.
$\bullet$ The player how take the last coin wins.
Let $A$ be the set of all positive integers like $a$ for which there exists a positive integer $b<a$ such that Paul has a wining strategy for the starting position $(a,b)$. Order the elements of $A$ to construct a sequence $a_1<a_2<a_3<\dots$
$(a)$ Prove that $A$ has infinity many elements.
$(b)$ Prove that the sequence defined by $m_k:=a_{k+1}-a_{k}$ will never become periodic. (This means the sequence $m_{k_0+k}$ will not be periodic for any choice of $k_0$)
2020 Brazil Undergrad MO, Problem 5
Let $N$ a positive integer.
In a spaceship there are $2 \cdot N$ people, and each two of them are friends or foes (both relationships are symmetric). Two aliens play a game as follows:
1) The first alien chooses any person as she wishes.
2) Thenceforth, alternately, each alien chooses one person not chosen before such that the person chosen on each turn be a friend of the person chosen on the previous turn.
3) The alien that can't play in her turn loses.
Prove that second player has a winning strategy [i]if, and only if[/i], the $2 \cdot N$ people can be divided in $N$ pairs in such a way that two people in the same pair are friends.
2018 Costa Rica - Final Round, LRP3
Jordan is in the center of a circle whose radius is $100$ meters and can move one meter at a time, however, there is a giant who at every step can force you to move in the opposite direction to the one he chose (it does not mean returning to the place of departure, but advance but in the opposite direction to the chosen one). Determine the minimum number of steps that Jordan must give to get out of the circle.
2010 Bundeswettbewerb Mathematik, 2
There are $9999$ rods with lengths $1, 2, ..., 9998, 9999$. The players Anja and Bernd alternately remove one of the sticks, with Anja starting. The game ends when there are only three bars left. If from those three bars, a not degenerate triangle can be constructed then Anja wins, otherwise Bernd.
Who has a winning strategy?
2018 Costa Rica - Final Round, LRP1
Arnulfo and Berenice play the following game: One of the two starts by writing a number from $ 1$ to $30$, the other chooses a number from $ 1$ to $30$ and adds it to the initial number, the first player chooses a number from $ 1$ to $30$ and adds it to the previous result, they continue doing the same until someone manages to add $2018$. When Arnulfo was about to start, Berenice told him that it was unfair, because whoever started had a winning strategy, so the numbers had better change. So they asked the following question:
Adding chosen numbers from $1 $ to $a$, until reaching the number $ b$, what conditions must meet $a$ and $ b$ so that the first player does not have a winning strategy?
Indicate if Arnulfo and Berenice are right and answer the question asked by them.
2006 VJIMC, Problem 3
Two players play the following game: Let $n$ be a fixed integer greater than $1$. Starting from number $k=2$, each player has two possible moves: either replace the number $k$ by $k+1$ or by $2k$. The player who is forced to write a number greater than $n$ loses the game. Which player has a winning strategy for which $n$?
2022 Kyiv City MO Round 2, Problem 4
Fedir and Mykhailo have three piles of stones: the first contains $100$ stones, the second $101$, the third $102$. They are playing a game, going in turns, Fedir makes the first move. In one move player can select any two piles of stones, let's say they have $a$ and $b$ stones left correspondently, and remove $gcd(a, b)$ stones from each of them. The player after whose move some pile becomes empty for the first time wins. Who has a winning strategy?
As a reminder, $gcd(a, b)$ denotes the greatest common divisor of $a, b$.
[i](Proposed by Oleksii Masalitin)[/i]
2019 Switzerland - Final Round, 4
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$.
Prove that Sisyphus cannot reach the aim in less than
\[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]
turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
2014 Gulf Math Olympiad, 2
Ahmad and Salem play the following game. Ahmad writes two integers (not necessarily different) on a board. Salem writes their sum and product. Ahmad does the same thing: he writes the sum and product of the two numbers which Salem has just written.
They continue in this manner, not stopping unless the two players write the same two numbers one after the other (for then they are stuck!). The order of the two numbers which each player writes is not important.
Thus if Ahmad starts by writing $3$ and $-2$, the first five moves (or steps) are as shown:
(a) Step 1 (Ahmad) $3$ and $-2$
(b) Step 2 (Salem) $1$ and $-6$
(c) Step 3 (Ahmad) $-5$ and $-6$
(d) Step 4 (Salem) $-11$ and $30$
(e) Step 5 (Ahmad) $19$ and $-330$
(i) Describe all pairs of numbers that Ahmad could write, and ensure that Salem must write the same numbers, and so the game stops at step 2.
(ii) What pair of integers should Ahmad write so that the game finishes at step 4?
(iii) Describe all pairs of integers which Ahmad could write at step 1, so that the game will finish after finitely many steps.
(iv) Ahmad and Salem decide to change the game. The first player writes three numbers on the board, $u, v$ and $w$. The second player then writes the three numbers $u + v + w,uv + vw + wu$ and $uvw$, and they proceed as before, taking turns, and using this new rule describing how to work out the next three numbers. If Ahmad goes first, determine all collections of three numbers which he can write down, ensuring that Salem has to write the same three numbers at the next step.
2000 Brazil Team Selection Test, Problem 3
Consider an equilateral triangle with every side divided by $n$ points into $n+1$ equal parts. We put a marker on every of the $3n$ division points. We draw lines parallel to the sides of the triangle through the division points, and this way divide the triangle into $(n+1)^2$ smaller ones.
Consider the following game: if there is a small triangle with exactly one vertex unoccupied, we put a marker on it and simultaneously take markers from the two its occupied vertices. We repeat this operation as long as it is possible.
(a) If $n\equiv1\pmod3$, show that we cannot manage that only one marker remains.
(b) If $n\equiv0$ or $n\equiv2\pmod3$, prove that we can finish the game leaving exactly one marker on the triangle.
2018 Regional Olympiad of Mexico Center Zone, 4
Ana and Natalia alternately play on a $ n \times n$ board (Ana rolls first and $n> 1$). At the beginning, Ana's token is placed in the upper left corner and Natalia's in the lower right corner. A turn consists of moving the corresponding piece in any of the four directions (it is not allowed to move diagonally), without leaving the board. The winner is whoever manages to place their token on the opponent's token. Determine if either of them can secure victory after a finite number of turns.
2024 China Girls Math Olympiad, 2
There are $8$ cards on which the numbers $1$, $2$, $\dots$, $8$ are written respectively. Alice and Bob play the following game: in each turn, Alice gives two cards to Bob, who must keep one card and discard the other. The game proceeds for four turns in total; in the first two turns, Bob cannot keep both of the cards with the larger numbers, and in the last two turns, Bob also cannot keep both of the cards with the larger numbers. Let $S$ be the sum of the numbers written on the cards that Bob keeps. Find the greatest positive integer $N$ for which Bob can guarantee that $S$ is at least $N$.