This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 304

2010 Bundeswettbewerb Mathematik, 2

There are $9999$ rods with lengths $1, 2, ..., 9998, 9999$. The players Anja and Bernd alternately remove one of the sticks, with Anja starting. The game ends when there are only three bars left. If from those three bars, a not degenerate triangle can be constructed then Anja wins, otherwise Bernd. Who has a winning strategy?

2018 Costa Rica - Final Round, LRP1

Arnulfo and Berenice play the following game: One of the two starts by writing a number from $ 1$ to $30$, the other chooses a number from $ 1$ to $30$ and adds it to the initial number, the first player chooses a number from $ 1$ to $30$ and adds it to the previous result, they continue doing the same until someone manages to add $2018$. When Arnulfo was about to start, Berenice told him that it was unfair, because whoever started had a winning strategy, so the numbers had better change. So they asked the following question: Adding chosen numbers from $1 $ to $a$, until reaching the number $ b$, what conditions must meet $a$ and $ b$ so that the first player does not have a winning strategy? Indicate if Arnulfo and Berenice are right and answer the question asked by them.

2014 Gulf Math Olympiad, 2

Ahmad and Salem play the following game. Ahmad writes two integers (not necessarily different) on a board. Salem writes their sum and product. Ahmad does the same thing: he writes the sum and product of the two numbers which Salem has just written. They continue in this manner, not stopping unless the two players write the same two numbers one after the other (for then they are stuck!). The order of the two numbers which each player writes is not important. Thus if Ahmad starts by writing $3$ and $-2$, the first five moves (or steps) are as shown: (a) Step 1 (Ahmad) $3$ and $-2$ (b) Step 2 (Salem) $1$ and $-6$ (c) Step 3 (Ahmad) $-5$ and $-6$ (d) Step 4 (Salem) $-11$ and $30$ (e) Step 5 (Ahmad) $19$ and $-330$ (i) Describe all pairs of numbers that Ahmad could write, and ensure that Salem must write the same numbers, and so the game stops at step 2. (ii) What pair of integers should Ahmad write so that the game finishes at step 4? (iii) Describe all pairs of integers which Ahmad could write at step 1, so that the game will finish after finitely many steps. (iv) Ahmad and Salem decide to change the game. The first player writes three numbers on the board, $u, v$ and $w$. The second player then writes the three numbers $u + v + w,uv + vw + wu$ and $uvw$, and they proceed as before, taking turns, and using this new rule describing how to work out the next three numbers. If Ahmad goes first, determine all collections of three numbers which he can write down, ensuring that Salem has to write the same three numbers at the next step.

2018 Regional Olympiad of Mexico Center Zone, 4

Ana and Natalia alternately play on a $ n \times n$ board (Ana rolls first and $n> 1$). At the beginning, Ana's token is placed in the upper left corner and Natalia's in the lower right corner. A turn consists of moving the corresponding piece in any of the four directions (it is not allowed to move diagonally), without leaving the board. The winner is whoever manages to place their token on the opponent's token. Determine if either of them can secure victory after a finite number of turns.

1999 Tournament Of Towns, 3

Two players play the following game. The first player starts by writing either $0$ or $1$ and then, on his every move, chooses either $0$ or $1$ and writes it to the right of the existing digits until there are $1999$ digits. Each time the first player puts down a digit (except the first one) , the second player chooses two digits among those already written and swaps them. Can the second player guarantee that after his last move the line of digits will be symmetrical about the middle digit? (I Izmestiev)

1961 All-Soviet Union Olympiad, 5

Nickolas and Peter divide $2n+1$ nuts amongst each other. Both of them want to get as many as possible. Three methods are suggested to them for doing so, each consisting of three stages. The first two stages are the same in all three methods: [i]Stage 1:[/i] Peter divides the nuts into 2 heaps, each containing at least 2 nuts. [i]Stage 2:[/i] Nickolas divides both heaps into 2 heaps, each containing at least 1 nut. Finally, stage 3 varies among the three methods as follows: [i]Method 1:[/i] Nickolas takes the smallest and largest of the heaps. [i]Method 2:[/i] Nickolas takes the two middle size heaps. [i]Method 3:[/i] Nickolas chooses between taking the biggest and the smallest heap or the two middle size heaps, but gives one nut to Peter for the right of choice. Determine the most and the least profitable method for Nickolas.

2019 Tournament Of Towns, 7

There are $100$ piles of $400$ stones each. At every move, Pete chooses two piles, removes one stone from each of them, and is awarded the number of points, equal to the non- negative difference between the numbers of stones in two new piles. Pete has to remove all stones. What is the greatest total score Pete can get, if his initial score is $0$? (Maxim Didin)

2020 IOM, 5

There is an empty table with $2^{100}$ rows and $100$ columns. Alice and Eva take turns filling the empty cells of the first row of the table, Alice plays first. In each move, Alice chooses an empty cell and puts a cross in it; Eva in each move chooses an empty cell and puts a zero. When no empty cells remain in the first row, the players move on to the second row, and so on (in each new row Alice plays first). The game ends when all the rows are filled. Alice wants to make as many different rows in the table as possible, while Eva wants to make as few as possible. How many different rows will be there in the table if both follow their best strategies? Proposed by Denis Afrizonov

2016 Greece JBMO TST, 4

Vaggelis has a box that contains $2015$ white and $2015$ black balls. In every step, he follows the procedure below: He choses randomly two balls from the box. If they are both blacks, he paints one white and he keeps it in the box, and throw the other one out of the box. If they are both white, he keeps one in the box and throws the other out. If they are one white and one black, he throws the white out, and keeps the black in the box. He continues this procedure, until three balls remain in the box. He then looks inside and he sees that there are balls of both colors. How many white balls does he see then, and how many black?

1976 All Soviet Union Mathematical Olympiad, 221

A row of $1000$ numbers is written on the blackboard. We write a new row, below the first according to the rule: We write under every number $a$ the natural number, indicating how many times the number $a$ is encountered in the first line. Then we write down the third line: under every number $b$ -- the natural number, indicating how many times the number $b$ is encountered in the second line, and so on. a) Prove that there is a line that coincides with the preceding one. b) Prove that the eleventh line coincides with the twelfth. c) Give an example of the initial line such, that the tenth row differs from the eleventh.

2008 Tournament Of Towns, 6

Seated in a circle are $11$ wizards. A different positive integer not exceeding $1000$ is pasted onto the forehead of each. A wizard can see the numbers of the other $10$, but not his own. Simultaneously, each wizard puts up either his left hand or his right hand. Then each declares the number on his forehead at the same time. Is there a strategy on which the wizards can agree beforehand, which allows each of them to make the correct declaration?

2013 Tournament of Towns, 7

On a table, there are $11$ piles of ten stones each. Pete and Basil play the following game. In turns they take $1, 2$ or $3$ stones at a time: Pete takes stones from any single pile while Basil takes stones from different piles but no more than one from each. Pete moves fi rst. The player who cannot move, loses. Which of the players, Pete or Basil, has a winning strategy?

1965 All Russian Mathematical Olympiad, 057

Given a board $3\times3$ and $9$ cards with some numbers (known to the players). Two players, in turn, put those cards on the board. The first wins if the sum of the numbers in the first and the third row is greater than in the first and the third column. Prove that it doesn't matter what numbers are on the cards, but if the first plays the best way, the second can not win.

2011 Costa Rica - Final Round, 3

The archipelago Barrantes - $n$ is a group of islands connected by bridges as follows: there are a main island (Humberto), in the first step I place an island below Humberto and one above from Humberto and I connect these 2 islands to Humberto. I put $2$ islands to the left of these $2$ new islands and I connect them with a bridge to the island that they have on their right. In the second step I take the last $2$ islands and I apply the same process that I applied to Humberto. In the third step I apply the same process to the $4$ new islands. We repeat this step n times we reflect the archipelago that we have on a vertical line to the right of Humberto. We connect Humberto with his reflection and so we have the archipelago Barrantes -$n$. However, the archipelago Barrantes -$n$ exists on a small planet cylindrical, so that the islands to the left of the archipelago are in fact the islands that are connected to the islands on the right. The figure shows the Barrantes archipelago -$2$, The islands at the edges are still numbered to show how the archipelago connects around the cylindrical world, the island numbered $1$ on the left is the same as the island numbered $1$ on the right. [img]https://cdn.artofproblemsolving.com/attachments/e/c/803d95ce742c2739729fdb4d74af59d4d0652f.png[/img] One day two bands of pirates arrive at the archipelago Barrantes - $n$: The pirates Black Beard and the Straw Hat Pirates. Blackbeard proposes a game to Straw Hat: The first player conquers an island, the next player must conquer an island connected to the island that was conquered in the previous turn (clearly not conquered on a previous shift). The one who cannot conquer any island in his turn loses. Straw Hat decides to give the first turn to Blackbeard. Prove that Straw Hat has a winning strategy for every $n$.

2018 Chile National Olympiad, 3

With $2018$ points, a network composed of hexagons is formed as a sample the figure: [asy] unitsize(1 cm); int i; path hex = dir(30)--(0,1)--dir(150)--dir(210)--(0,-1)--dir(330)--cycle; draw(hex); draw(shift((sqrt(3),0))*(hex)); draw(shift((2*sqrt(3),0))*(hex)); draw(shift((4*sqrt(3),0))*(hex)); draw(shift((5*sqrt(3),0))*(hex)); dot((3*sqrt(3) - 0.3,0)); dot((3*sqrt(3),0)); dot((3*sqrt(3) + 0.3,0)); dot(dir(150)); dot(dir(210)); for (i = 0; i <= 5; ++i) { if (i != 3) { dot((0,1) + i*(sqrt(3),0)); dot(dir(30) + i*(sqrt(3),0)); dot(dir(330) + i*(sqrt(3),0)); dot((0,-1) + i*(sqrt(3),0)); } } dot(dir(150) + 4*(sqrt(3),0)); dot(dir(210) + 4*(sqrt(3),0)); [/asy] A bee and a fly play the following game: initially the bee chooses one of the $2018$ dots and paints it red, then the fly chooses one of the $2017$ unpainted dots and paint it blue. Then the bee chooses an unpainted point and paints it red and then the fly chooses an unpainted one and paints it blue and so they alternate. If at the end of the game there is an equilateral triangle with red vertices, the bee wins, otherwise Otherwise the fly wins. Determine which of the two insects has a winning strategy.

2017 JBMO Shortlist, C3

We have two piles with $2000$ and $2017$ coins respectively. Ann and Bob take alternate turns making the following moves: The player whose turn is to move picks a pile with at least two coins, removes from that pile $t$ coins for some $2\le t \le 4$, and adds to the other pile $1$ coin. The players can choose a different $t$ at each turn, and the player who cannot make a move loses. If Ann plays first determine which player has a winning strategy.

2021 Dutch IMO TST, 2

Stekel and Prick play a game on an $ m \times n$ board, where $m$ and $n$ are positive are integers. They alternate turns, with Stekel starting. Spine bets on his turn, he always takes a pawn on a square where there is no pawn yet. Prick does his turn the same, but his pawn must always come into a square adjacent to the square that Spike just placed a pawn in on his previous turn. Prick wins like the whole board is full of pawns. Spike wins if Prik can no longer move a pawn on his turn, while there is still at least one empty square on the board. Determine for all pairs $(m, n)$ who has a winning strategy.

Mathley 2014-15, 3

A point $P$ is interior to the triangle $ABC$ such that $AP \perp BC$. Let $E, F$ be the projections of $CA, AB$. Suppose that the tangents at $E, F$ of the circumcircle of triangle $AEF$ meets at a point on $BC$. Prove that $P$ is the orthocenter of triangle $ABC$. Do Thanh Son, High School of Natural Sciences, National University, Hanoi

1983 Tournament Of Towns, (037) A4

(a) An infinite sheet is divided into squares by two sets of parallel lines. Two players play the following game: the first player chooses a square and colours it red, the second player chooses a non-coloured square and colours it blue, the first player chooses a non-coloured square and colours it red, the second player chooses a non-coloured square and colours it blue, and so on. The goal of the first player is to colour four squares whose vertices form a square with sides parallel to the lines of the two parallel sets. The goal of the second player is to prevent him. Can the first player win? (b) What is the answer to this question if the second player is permitted to colour two squares at once? (DG Azov) PS. (a) for Juniors, (a),(b) for Seniors

2018 Iran Team Selection Test, 2

Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector). At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy? [i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]

1994 IMO Shortlist, 1

Two players play alternately on a $ 5 \times 5$ board. The first player always enters a $ 1$ into an empty square and the second player always enters a $ 0$ into an empty square. When the board is full, the sum of the numbers in each of the nine $ 3 \times 3$ squares is calculated and the first player's score is the largest such sum. What is the largest score the first player can make, regardless of the responses of the second player?

2022 Centroamerican and Caribbean Math Olympiad, 1

There is a pile with 2022 rocks. Ana y Beto play by turns to the following game, starting with Ana: in each turn, if there are $n$ rocks in the pile, the player can remove $S(n)$ rocks or $n-S(n)$ rocks, where $S(n)$ is the sum of the the digits of $n$. The person who removes the last rock wins. Determine which of the two players has a winning strategy and describe it.

1988 Tournament Of Towns, (166) 3

(a) The vertices of a regular $10$-gon are painted in turn black and white. Two people play the following game . Each in turn draws a diagonal connecting two vertices of the same colour . These diagonals must not intersect . The winner is the player who is able to make the last move. Who will win if both players adopt the best strategy? (b) Answer the same question for the regular $12$-gon . (V.G. Ivanov)

2020 OMpD, 2

A pile of $2020$ stones is given. Arnaldo and Bernaldo play the following game: In each move, it is allowed to remove $1, 4, 16, 64, ...$ (any power of $4$) stones from the pile. They make their moves alternately, and the player who can no longer play loses. If Arnaldo is the first to play, who has the winning strategy?

1982 Tournament Of Towns, (023) 1

There are $36$ cards in a deck arranged in the sequence spades, clubs, hearts, diamonds, spades, clubs, hearts, diamonds, etc. Somebody took part of this deck off the top, turned it upside down, and cut this part into the remaining part of the deck (i.e. inserted it between two consecutive cards). Then four cards were taken off the top, then another four, etc. Prove that in any of these sets of four cards, all the cards are of different suits. (A Merkov, Moscow)