This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 86

2016 Stars of Mathematics, 3

Let $ ABC $ be a triangle, $ M_A $ be the midpoint of the side $ BC, $ and $ P_A $ be the orthogonal projection of $ A $ on $ BC. $ Similarly, define $ M_B,M_C,P_B,P_C. M_BM_C $ intersects $ P_BP_C $ at $ S_A, $ and the tangent of the circumcircle of $ ABC $ at $ A $ meets $ BC $ at $ T_A. $ Similarly, define $ S_B,S_C,T_B,T_C. $ Show that the perpendiculars through $ A,B,C, $ to $ S_AT_A,S_BT_B, $ respectively, $ S_CT_C, $ are concurent. [i]Flavian Georgescu[/i]

1989 All Soviet Union Mathematical Olympiad, 505

$S$ and $S'$ are two intersecting spheres. The line $BXB'$ is parallel to the line of centers, where $B$ is a point on $S, B'$ is a point on $S'$ and $X$ lies on both spheres. $A$ is another point on $S$, and $A'$ is another point on S' such that the line $AA'$ has a point on both spheres. Show that the segments $AB$ and $A'B'$ have equal projections on the line $AA'$.

1949-56 Chisinau City MO, 61

Find the locus of the projections of a given point on all planes containing another point $B$.

1992 IMO Longlists, 38

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

2004 Oral Moscow Geometry Olympiad, 4

Triangle $ABC$ is inscribed in a circle. Through points $A$ and $B$ tangents to this circle are drawn, which intersect at point $P$. Points $X$ and $Y$ are orthogonal projections of point $P$ onto lines $AC$ and $BC$. Prove that line $XY$ is perpendicular to the median of triangle $ABC$ from vertex $C$.

2006 Sharygin Geometry Olympiad, 24

a) Two perpendicular rays are drawn through a fixed point $P$ inside a given circle, intersecting the circle at points $A$ and $B$. Find the geometric locus of the projections of $P$ on the lines $AB$. b) Three pairwise perpendicular rays passing through the fixed point $P$ inside a given sphere intersect the sphere at points $A, B, C$. Find the geometrical locus of the projections $P$ on the $ABC$ plane

2006 Sharygin Geometry Olympiad, 10.2

The projections of the point $X$ onto the sides of the $ABCD$ quadrangle lie on the same circle. $Y$ is a point symmetric to $X$ with respect to the center of this circle. Prove that the projections of the point $B$ onto the lines $AX,XC, CY, YA$ also lie on the same circle.

1992 IMO Shortlist, 10

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

2013 Switzerland - Final Round, 3

Let $ABCD$ be a cyclic quadrilateral with $\angle ADC = \angle DBA$. Furthermore, let $E$ be the projection of $A$ on $BD$. Show that $BC = DE - BE$ .

May Olympiad L2 - geometry, 2008.2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

Estonia Open Senior - geometry, 1993.5

Within an equilateral triangle $ABC$, take any point $P$. Let $L, M, N$ be the projections of $P$ on sides $AB, BC, CA$ respectively. Prove that $\frac{AP}{NL}=\frac{BP}{LM}=\frac{CP}{MN}$.

2006 MOP Homework, 2

Points $P$ and $Q$ lies inside triangle $ABC$ such that $\angle ACP =\angle BCQ$ and $\angle CAP = \angle BAQ$. Denote by $D,E$, and $F$ the feet of perpendiculars from $P$ to lines $BC,CA$, and $AB$, respectively. Prove that if $\angle DEF = 90^o$, then $Q$ is the orthocenter of triangle $BDF$.

1979 Poland - Second Round, 3

In space there is a line $ k $ and a cube with a vertex $ M $ and edges $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, of length$ 1$. Prove that the length of the orthogonal projection of edge $ MA $ on the line $ k $ is equal to the area of the orthogonal projection of a square with sides $ MB $ and $ MC $ onto a plane perpendicular to the line $ k $. [hide=original wording]W przestrzeni dana jest prosta $ k $ oraz sześcian o wierzchołku $ M $ i krawędziach $ \overline{MA} $, $ \overline{MB} $, $ \overline{MC} $, długości 1. Udowodnić, że długość rzutu prostokątnego krawędzi $ MA $ na prostą $ k $ jest równa polu rzutu prostokątnego kwadratu o bokach $ MB $ i $ MC $ na płaszczyznę prostopadłą do prostej $ k $.[/hide]

1974 Vietnam National Olympiad, 3

Let $ABC$ be a triangle with $A = 90^o, AH$ the altitude, $P,Q$ the feet of the perpendiculars from $H$ to $AB,AC$ respectively. Let $M$ be a variable point on the line $PQ$. The line through $M$ perpendicular to $MH$ meets the lines $AB,AC$ at $R, S$ respectively. i) Prove that circumcircle of $ARS$ always passes the fixed point $H$. ii) Let $M_1$ be another position of $M$ with corresponding points $R_1, S_1$. Prove that the ratio $RR_1/SS_1$ is constant. iii) The point $K$ is symmetric to $H$ with respect to $M$. The line through $K$ perpendicular to the line $PQ$ meets the line $RS$ at $D$. Prove that$ \angle BHR = \angle DHR, \angle DHS = \angle CHS$.

1997 Romania National Olympiad, 3

A point $A_0$ and two lines $d_1$ and $d_2$ are given in the space. For each nonnegative integer $n$ we denote by $B_n$ the projection of $A_n$ on $d_2,$ and by $A_{n+1}$ the projection of $B_n$ on $d_1.$ Prove that there exist two segments $[A'A''] \subset d_1$ and $[B'B''] \subset d_2$ of length $0.001$ and a nonnegative integer $N$ such that $A_n \in [A'A'']$ and $B_n \in [B'B'']$ for any $n \ge N.$

2008 May Olympiad, 2

Let $ABCD$ be a rectangle and $P$ be a point on the side$ AD$ such that $\angle BPC = 90^o$. The perpendicular from $A$ on $BP$ cuts $BP$ at $M$ and the perpendicular from $D$ on $CP$ cuts $CP$ in $N$. Show that the center of the rectangle lies in the $MN$ segment.

2012 Switzerland - Final Round, 10

Let $O$ be an inner point of an acute-angled triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the projections of $O$ on the sides $BC, AC$ and $AB$ respectively . Let $P$ be the intersection of the perpendiculars on $B_1C_1$ and $A_1C_1$ from points$ A$ and $B$ respectilvey. Let $H$ be the projection of $P$ on $AB$. Show that points $A_1, B_1, C_1$ and $H$ lie on a circle.

2010 Sharygin Geometry Olympiad, 4

Projections of two points to the sidelines of a quadrilateral lie on two concentric circles (projections of each point form a cyclic quadrilateral and the radii of circles are different). Prove that this quadrilateral is a parallelogram.

2011 Sharygin Geometry Olympiad, 23

Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly. (a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$. (b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle. [i]M. Marinov and N. Beluhov[/i]

Swiss NMO - geometry, 2013.3

Let $ABCD$ be a cyclic quadrilateral with $\angle ADC = \angle DBA$. Furthermore, let $E$ be the projection of $A$ on $BD$. Show that $BC = DE - BE$ .

1951 Moscow Mathematical Olympiad, 200

What figure can the central projection of a triangle be? (The center of the projection does not lie on the plane of the triangle.)

2010 Saudi Arabia BMO TST, 4

In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Denote by $P, Q, R, S$ the orthogonal projections of $O$ onto $AB$ , $BC$ ,$CD$ , $DA$, respectively. Prove that $$PA \cdot AB + RC \cdot CD =\frac12 (AD^2 + BC^2)$$ if and only if $$QB \cdot BC + SD \cdot DA = \frac12(AB ^2 + CD^2)$$

2002 Moldova Team Selection Test, 4

Let $C$ be the circle with center $O(0,0)$ and radius $1$, and $A(1,0), B(0,1)$ be points on the circle. Distinct points $A_1,A_2, ....,A_{n-1}$ on $C$ divide the smaller arc $AB$ into $n$ equal parts ($n \ge 2$). If $P_i$ is the orthogonal projection of $A_i$ on $OA$ ($i =1, ... ,n-1$), find all values of $n$ such that $P_1A^{2p}_1 +P_2A^{2p}_2 +...+P_{n-1}A^{2p}_{n-1}$ is an integer for every positive integer $p$.

2006 Estonia Team Selection Test, 2

The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.

Mathley 2014-15, 3

A point $P$ is interior to the triangle $ABC$ such that $AP \perp BC$. Let $E, F$ be the projections of $CA, AB$. Suppose that the tangents at $E, F$ of the circumcircle of triangle $AEF$ meets at a point on $BC$. Prove that $P$ is the orthocenter of triangle $ABC$. Do Thanh Son, High School of Natural Sciences, National University, Hanoi