This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 316

2022 Austrian MO National Competition, 2

Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. [i](Karl Czakler)[/i]

2012 India Regional Mathematical Olympiad, 4

$H$ is the orthocentre of an acute–angled triangle $ABC$. A point $E$ is taken on the line segment $CH$ such that $ABE$ is a right–angled triangle. Prove that the area of the triangle $ABE$ is the geometric mean of the areas of triangles $ABC$ and $ABH$.

2016 German National Olympiad, 3

Let $I_a$ be the $A$-excenter of a scalene triangle $ABC$. And let $M$ be the point symmetric to $I_a$ about line $BC$. Prove that line $AM$ is parallel to the line through the circumcenter and the orthocenter of triangle $I_aCB$.

2009 Brazil Team Selection Test, 1

Let $A, B, C, D, E$ points in circle of radius r, in that order, such that $AC = BD = CE = r$. The points $H_1, H_2, H_3$ are the orthocenters of the triangles $ACD$, $BCD$ and $BCE$, respectively. Prove that $H_1H_2H_3$ is a right triangle .

2024 Philippine Math Olympiad, P7

Let $ABC$ be an acute triangle with orthocenter $H$, circumcenter $O$, and circumcircle $\Omega$. Points $E$ and $F$ are the feet of the altitudes from $B$ to $AC$, and from $C$ to $AB$, respectively. Let line $AH$ intersect $\Omega$ again at $D$. The circumcircle of $DEF$ intersects $\Omega$ again at $X$, and $AX$ intersects $BC$ at $I$. The circumcircle of $IEF$ intersects $BC$ again at $G$. If $M$ is the midpoint of $BC$, prove that lines $MX$ and $OG$ intersect on $\Omega$.

2014 Junior Balkan Team Selection Tests - Romania, 4

In the acute triangle $ABC$, with $AB \ne BC$, let $T$ denote the midpoint of the side $[AC], A_1$ and $C_1$ denote the feet of the altitudes drawn from $A$ and $C$, respectively. Let $Z$ be the intersection point of the tangents in $A$ and $C $ to the circumcircle of triangle $ABC, X$ be the intersection point of lines $ZA$ and $A_1C_1$ and $Y$ be the intersection point of lines $ZC$ and $A_1C_1$. a) Prove that $T$ is the incircle of triangle $XYZ$. b) The circumcircles of triangles $ABC$ and $A_1BC_1$ meet again at $D$. Prove that the orthocenter $H$ of triangle $ABC$ is on the line $TD$. c) Prove that the point $D$ lies on the circumcircle of triangle $XYZ$.

Mathematical Minds 2023, P6

Let $ABC$ be a triangle, $O{}$ be its circumcenter, $I{}$ its incenter and $I_A,I_B,I_C$ the excenters. Let $M$ be the midpoint of $BC$ and $H_1$ and $H_2$ be the orthocenters of the triangles $MII_A$ and $MI_BI_C$. Prove that the parallel to $BC$ through $O$ passes through the midpoint of the segment $H_1H_2$. [i]Proposed by David Anghel[/i]

1993 Tournament Of Towns, (358) 1

Let $M$ be a point on the side $AB$ of triangle $ABC$. The length $AB = c$ and $\angle CMA=\phi$ are given. Find the distance between the orthocentres (intersection points of altitudes) of the triangles $AMC$ and $BMC$. (IF Sharygin)

2022 Federal Competition For Advanced Students, P2, 2

Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. [i](Karl Czakler)[/i]

1990 IMO Longlists, 96

Suppose that points $X, Y,Z$ are located on sides $BC, CA$, and $AB$, respectively, of triangle $ABC$ in such a way that triangle $XY Z$ is similar to triangle $ABC$. Prove that the orthocenter of triangle $XY Z$ is the circumcenter of triangle $ABC.$

2021 Caucasus Mathematical Olympiad, 7

An acute triangle $ABC$ is given. Let $AD$ be its altitude, let $H$ and $O$ be its orthocenter and its circumcenter, respectively. Let $K$ be the point on the segment $AH$ with $AK=HD$; let $L$ be the point on the segment $CD$ with $CL=DB$. Prove that line $KL$ passes through $O$.

1997 Austrian-Polish Competition, 4

In a trapezoid $ABCD$ with $AB // CD$, the diagonals $AC$ and $BD$ intersect at point $E$. Let $F$ and $G$ be the orthocenters of the triangles $EBC$ and $EAD$. Prove that the midpoint of $GF$ lies on the perpendicular from $E$ to $AB$.

2005 Sharygin Geometry Olympiad, 10.6

Let $H$ be the orthocenter of triangle $ABC$, $X$ be an arbitrary point. A circle with a diameter of $XH$ intersects lines $AH, BH, CH$ at points $A_1, B_1, C_1$ for the second time, and lines $AX BX, CX$ at points $A_2, B_2, C_2$. Prove that lines A$_1A_2, B_1B_2, C_1C_2$ intersect at one point.

Geometry Mathley 2011-12, 1.2

Let $ABC$ be an acute triangle with its altitudes $BE,CF$. $M$ is the midpoint of $BC$. $N$ is the intersection of $AM$ and $EF. X$ is the projection of $N$ on $BC$. $Y,Z$ are respectively the projections of $X$ onto $AB,AC$. Prove that $N$ is the orthocenter of triangle $AYZ$. Nguyễn Minh Hà

2017 Mexico National Olympiad, 3

Let $ABC$ be an acute triangle with orthocenter $H$. The circle through $B, H$, and $C$ intersects lines $AB$ and $AC$ at $D$ and $E$ respectively, and segment $DE$ intersects $HB$ and $HC$ at $P$ and $Q$ respectively. Two points $X$ and $Y$, both different from $A$, are located on lines $AP$ and $AQ$ respectively such that $X, H, A, B$ are concyclic and $Y, H, A, C$ are concyclic. Show that lines $XY$ and $BC$ are parallel.

2015 Estonia Team Selection Test, 4

Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $C_1 (H,HE)$ and $C_2(B,BE)$ be two circles tangent at $AC$ at point $E$. Let $P\ne E$ be the second point of tangency of the circle $C_1 (H,HE)$ with its tangent line going through point $C$, and $Q\ne E$ be the second point of tangency of the circle $C_2(B,BE)$ with its tangent line going through point $C$. Prove that points $D, P$, and $Q$ are collinear.

2019 Junior Balkan Team Selection Tests - Romania, 3

Let $d$ be the tangent at $B$ to the circumcircle of the acute scalene triangle $ABC$. Let $K$ be the orthogonal projection of the orthocenter, $H$, of triangle $ABC$ to the line $d$ and $L$ the midpoint of the side $AC$. Prove that the triangle $BKL$ is isosceles.

2002 India IMO Training Camp, 4

Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Show that there exist points $D$, $E$, and $F$ on sides $BC$, $CA$, and $AB$ respectively such that \[ OD + DH = OE + EH = OF + FH\] and the lines $AD$, $BE$, and $CF$ are concurrent.

2018 USAJMO, 3

Let $ABCD$ be a quadrilateral inscribed in circle $\omega$ with $\overline{AC} \perp \overline{BD}$. Let $E$ and $F$ be the reflections of $D$ over lines $BA$ and $BC$, respectively, and let $P$ be the intersection of lines $BD$ and $EF$. Suppose that the circumcircle of $\triangle EPD$ meets $\omega$ at $D$ and $Q$, and the circumcircle of $\triangle FPD$ meets $\omega$ at $D$ and $R$. Show that $EQ = FR$.

2022 Iran MO (3rd Round), 2

Constant points $B$ and $C$ lie on the circle $\omega$. The point middle of $BC$ is named $M$ by us. Assume that $A$ is a variable point on the $\omega$ and $H$ is the orthocenter of the triangle $ABC$. From the point $H$ we drop a perpendicular line to $MH$ to intersect the lines $AB$ and $AC$ at $X$ and $Y$ respectively. Prove that with the movement of $A$ on the $\omega$, the orthocenter of the triangle $AXY$ also moves on a circle.

2019 Grand Duchy of Lithuania, 3

Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. The perpendicular bisector of segment $CH$ intersects the sides $AC$ and $BC$ in points $X$ and $Y$ , respectively. The lines $XO$ and $YO$ intersect the side $AB$ in points $P$ and $Q$, respectively. Prove that if $XP + Y Q = AB + XY$ then $\angle OHC = 90^o$.

2012 Danube Mathematical Competition, 2

Let $ABC$ be an acute triangle and let $A_1$, $B_1$, $C_1$ be points on the sides $BC, CA$ and $AB$, respectively. Show that the triangles $ABC$ and $A_1B_1C_1$ are similar ($\angle A = \angle A_1, \angle B = \angle B_1,\angle C = \angle C_1$) if and only if the orthocentre of the triangle $A_1B_1C_1$ and the circumcentre of the triangle $ABC$ coincide.

2012 Sharygin Geometry Olympiad, 6

Let $\omega$ be the circumcircle of triangle $ABC$. A point $B_1$ is chosen on the prolongation of side $AB$ beyond point B so that $AB_1 = AC$. The angle bisector of $\angle BAC$ meets $\omega$ again at point $W$. Prove that the orthocenter of triangle $AWB_1$ lies on $\omega$ . (A.Tumanyan)

2022 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ an acutangle triangle with orthocenter $H$ and circumcenter $O$. Let $D$ the intersection of $AO$ and $BH$. Let $P$ be the point on $AB$ such that $PH=PD$. Prove that the points $B, D, O$ and $P$ lie on a circle.

2023 USEMO, 4

Let $ABC$ be an acute triangle with orthocenter $H$. Points $A_1$, $B_1$, $C_1$ are chosen in the interiors of sides $BC$, $CA$, $AB$, respectively, such that $\triangle A_1B_1C_1$ has orthocenter $H$. Define $A_2 = \overline{AH} \cap \overline{B_1C_1}$, $B_2 = \overline{BH} \cap \overline{C_1A_1}$, and $C_2 = \overline{CH} \cap \overline{A_1B_1}$. Prove that triangle $A_2B_2C_2$ has orthocenter $H$. [i]Ankan Bhattacharya[/i]