This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

2022 Cono Sur, 4

Ana and Beto play on a grid of $2022 \times 2022$. Ana colors the sides of some squares on the board red, so that no square has two red sides that share a vertex. Next, Bob must color a blue path that connects two of the four corners of the board, following the sides of the squares and not using any red segments. If Beto succeeds, he is the winner, otherwise Ana wins. Who has a winning strategy?

2023 Tuymaada Olympiad, 4

Two players play a game. They have $n > 2$ piles containing $n^{10}+1$ stones each. A move consists of removing all the piles but one and dividing the remaining pile into $n$ nonempty piles. The player that cannot move loses. Who has a winning strategy, the player that moves first or his adversary?

2024 Mexico National Olympiad, 6

Ana and Beto play on a blackboard where all integers from 1 to 2024 (inclusive) are written. On each turn, Ana chooses three numbers $a,b,c$ written on the board and then Beto erases them and writes one of the following numbers: $$a+b-c, a-b+c, ~\text{or}~ -a+b+c.$$ The game ends when only two numbers are left on the board and Ana cannot play. If the sum of the final numbers is a multiple of 3, Beto wins. Otherwise, Ana wins. ¿Who has a winning strategy?

2018 All-Russian Olympiad, 5

On the circle, 99 points are marked, dividing this circle into 99 equal arcs. Petya and Vasya play the game, taking turns. Petya goes first; on his first move, he paints in red or blue any marked point. Then each player can paint on his own turn, in red or blue, any uncolored marked point adjacent to the already painted one. Vasya wins, if after painting all points there is an equilateral triangle, all three vertices of which are colored in the same color. Could Petya prevent him?

2018 IFYM, Sozopol, 7

$n$ points were chosen on a circle. Two players are playing the following game: On every move a point is chosen and it is connected with an edge to an adjacent point or with the center of the circle. The winner is the player, after whose move each point can be reached by any other (including the center) by moving on the constructed edges. Find who of the two players has a winning strategy.

2021 Serbia JBMO TSTs, 3

Two players play the following game: alternatively they write numbers $1$ or $0$ in the vertices of an $n$-gon. First player starts the game and wins if after any of his moves there exists a triangle, whose vertices are three consecutive vertices of the $n$-gon, such that the sum of numbers in it's vertices is divisible by $3$. Second player wins if he prevents this. Determine which player has a winning strategy if: a) $n=2019$ b) $n=2020$ c) $n=2021$

2018 European Mathematical Cup, 4

Let $n$ be a positive integer. Ana and Banana are playing the following game: First, Ana arranges $2n$ cups in a row on a table, each facing upside-down. She then places a ball under a cup and makes a hole in the table under some other cup. Banana then gives a finite sequence of commands to Ana, where each command consists of swapping two adjacent cups in the row. Her goal is to achieve that the ball has fallen into the hole during the game. Assuming Banana has no information about the position of the hole and the position of the ball at any point, what is the smallest number of commands she has to give in order to achieve her goal?

2025 China Team Selection Test, 10

Given an odd integer $n \geq 3$. Let $V$ be the set of vertices of a regular $n$-gon, and $P$ be the set of all regular polygons formed by points in $V$. For instance, when $n=15$, $P$ consists of $1$ regular $15$-gon, $3$ regular pentagons, and $5$ regular triangles. Initially, all points in $V$ are uncolored. Two players, $A$ and $B$, play a game where they take turns coloring an uncolored point, with player $A$ starting and coloring points red, and player $B$ coloring points blue. The game ends when all points are colored. A regular polygon in $P$ is called $\textit{good}$ if it has more red points than blue points. Find the largest positive integer $k$ such that no matter how player $B$ plays, player $A$ can ensure that there are at least $k$ $\textit{good}$ polygons.

1999 All-Russian Olympiad, 1

There are three empty jugs on a table. Winnie the Pooh, Rabbit, and Piglet put walnuts in the jugs one by one. They play successively, with the initial determined by a draw. Thereby Winnie the Pooh plays either in the first or second jug, Rabbit in the second or third, and Piglet in the first or third. The player after whose move there are exactly 1999 walnuts loses the games. Show that Winnie the Pooh and Piglet can cooperate so as to make Rabbit lose.

2022 Switzerland Team Selection Test, 8

Johann and Nicole are playing a game on the coordinate plane. First, Johann draws any polygon $\mathcal{S}$ and then Nicole can shift $\mathcal{S}$ to wherever she wants. Johann wins if there exists a point with coordinates $(x, y)$ in the interior of $\mathcal{S}$, where $x$ and $y$ are coprime integers. Otherwise, Nicole wins. Determine who has a winning strategy.

2016 Bosnia and Herzegovina Team Selection Test, 2

Let $n$ be a positive integer and let $t$ be an integer. $n$ distinct integers are written on a table. Bob, sitting in a room nearby, wants to know whether there exist some of these numbers such that their sum is equal to $t$. Alice is standing in front of the table and she wants to help him. At the beginning, she tells him only the initial sum of all numbers on the table. After that, in every move he says one of the $4$ sentences: $i.$ Is there a number on the table equal to $k$? $ii.$ If a number $k$ exists on the table, erase him. $iii.$ If a number $k$ does not exist on the table, add him. $iv.$ Do the numbers written on the table can be arranged in two sets with equal sum of elements? On these questions Alice answers yes or no, and the operations he says to her she does (if it is possible) and does not tell him did she do it. Prove that in less than $3n$ moves, Bob can find out whether there exist numbers initially written on the board such that their sum is equal to $t$

2019 Ecuador NMO (OMEC), 4

Let $n> 1$ be a positive integer. Danielle chooses a number $N$ of $n$ digits but does not tell her students and they must find the sum of the digits of $N$. To achieve this, each student chooses and says once a number of $n$ digits to Danielle and she tells how many digits are in the correct location compared with $N$. Find the minimum number of students that must be in the class to ensure that students have a strategy to correctly find the sum of the digits of $N$ in any case and show a strategy in that case.

2024 Auckland Mathematical Olympiad, 7

Tags: game theory
There are $20$ points marked on a circle. Two players take turns drawing chords with ends at marked points that do not intersect the already drawn chords. The one who cannot make the next move loses. Who can secure their win?

2024 Alborz Mathematical Olympiad, P3

A person is locked in a room with a password-protected computer. If they enter the correct password, the door opens and they are freed. However, the password changes every time it is entered incorrectly. The person knows that the password is always a 10-digit number, and they also know that the password change follows a fixed pattern. This means that if the current password is \( b \) and \( a \) is entered, the new password is \( c \), which is determined by \( b \) and \( a \) (naturally, the person does not know \( c \) or \( b \)). Prove that regardless of the characteristics of this computer, the prisoner can free themselves. Proposed by Reza Tahernejad Karizi

2003 Baltic Way, 8

There are $2003$ pieces of candy on a table. Two players alternately make moves. A move consists of eating one candy or half of the candies on the table (the “lesser half” if there are an odd number of candies). At least one candy must be eaten at each move. The loser is the one who eats the last candy. Which player has a winning strategy?

2021 JHMT HS, 7

A number line with the integers $1$ through $20,$ from left to right, is drawn. Ten coins are placed along this number line, with one coin at each odd number on the line. A legal move consists of moving one coin from its current position to a position of strictly greater value on the number line that is not already occupied by another coin. How many ways can we perform two legal moves in sequence, starting from the initial position of the coins (different two-move sequences that result in the same position are considered distinct)?

2017 CentroAmerican, 2

Susana and Brenda play a game writing polynomials on the board. Susana starts and they play taking turns. 1) On the preparatory turn (turn 0), Susana choose a positive integer $n_0$ and writes the polynomial $P_0(x)=n_0$. 2) On turn 1, Brenda choose a positive integer $n_1$, different from $n_0$, and either writes the polynomial $$P_1(x)=n_1x+P_0(x) \textup{ or } P_1(x)=n_1x-P_0(x)$$ 3) In general, on turn $k$, the respective player chooses an integer $n_k$, different from $n_0, n_1, \ldots, n_{k-1}$, and either writes the polynomial $$P_k(x)=n_kx^k+P_{k-1}(x) \textup{ or } P_k(x)=n_kx^k-P_{k-1}(x)$$ The first player to write a polynomial with at least one whole whole number root wins. Find and describe a winning strategy.

2021 Taiwan TST Round 1, C

Let $n$ and $k$ be positive integers satisfying $k\leq2n^2$. Lee and Sunny play a game with a $2n\times2n$ grid paper. First, Lee writes a non-negative real number no greater than $1$ in each of the cells, so that the sum of all numbers on the paper is $k$. Then, Sunny divides the paper into few pieces such that each piece is constructed by several complete and connected cells, and the sum of all numbers on each piece is at most $1$. There are no restrictions on the shape of each piece. (Cells are connected if they share a common edge.) Let $M$ be the number of pieces. Lee wants to maximize $M$, while Sunny wants to minimize $M$. Find the value of $M$ when Lee and Sunny both play optimally.

Russian TST 2018, P2

Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector). At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy? [i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]

2019 Tournament Of Towns, 5

A magician and his assistent are performing the following trick.There is a row of 12 empty closed boxes. The magician leaves the room, and a person from the audience hides a coin in each of two boxes of his choice, so that the assistent knows which boxes contain coins. The magician returns, and the assistant is allowed to open one box that does not contain a coin. Next, the magician selects 4 boxes, which are simultaneously opened. The goal of the magician is to open both boxes that contain coins. Devise a method that will allow the magician and his assistant to always succesfully perform the trick.

2020 OMpD, 2

A pile of $2020$ stones is given. Arnaldo and Bernaldo play the following game: In each move, it is allowed to remove $1, 4, 16, 64, ...$ (any power of $4$) stones from the pile. They make their moves alternately, and the player who can no longer play loses. If Arnaldo is the first to play, who has the winning strategy?

2022 Iran Team Selection Test, 6

Let $m,n$ and $a_1,a_2,\dots,a_m$ be arbitrary positive integers. Ali and Mohammad Play the following game. At each step, Ali chooses $b_1,b_2,\dots,b_m \in \mathbb{N}$ and then Mohammad chosses a positive integers $s$ and obtains a new sequence $\{c_i=a_i+b_{i+s}\}_{i=1}^m$, where $$b_{m+1}=b_1,\ b_{m+2}=b_2, \dots,\ b_{m+s}=b_s$$ The goal of Ali is to make all the numbers divisible by $n$ in a finite number of steps. FInd all positive integers $m$ and $n$ such that Ali has a winning strategy, no matter how the initial values $a_1, a_2,\dots,a_m$ are. [hide=clarification] after we create the $c_i$ s, this sequence becomes the sequence that we continue playing on, as in it is our 'new' $a_i$[/hide] Proposed by Shayan Gholami

2016 Tournament Of Towns, 6

Petya and Vasya play the following game. Petya conceives a polynomial $P(x)$ having integer coefficients. On each move, Vasya pays him a ruble, and calls an integer $a$ of his choice, which has not yet been called by him. Petya has to reply with the number of distinct integer solutions of the equation $P(x)=a$. The game continues until Petya is forced to repeat an answer. What minimal amount of rubles must Vasya pay in order to win? [i](Anant Mudgal)[/i] (Translated from [url=http://sasja.shap.homedns.org/Turniry/TG/index.html]here.[/url])

2023 Turkey Olympic Revenge, 5

There are $10$ cups, each having $10$ pebbles in them. Two players $A$ and $B$ play a game, repeating the following in order each move: $\bullet$ $B$ takes one pebble from each cup and redistributes them as $A$ wishes. $\bullet$ After $B$ distributes the pebbles, he tells how many pebbles are in each cup to $A$. Then $B$ destroys all the cups having no pebbles. $\bullet$ $B$ switches the places of two cups without telling $A$. After finitely many moves, $A$ can guarantee that $n$ cups are destroyed. Find the maximum possible value of $n$. (Note that $A$ doesn't see the cups while playing.) [i]Proposed by Emre Osman[/i]

2019 Romania Team Selection Test, 3

Alice and Bob play the following game. To start, Alice arranges the numbers $1,2,\ldots,n$ in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's [i]turn[/i] consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number $k$ at most $k$ times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer $n$, determine who has a winning strategy.