This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14

2019 Azerbaijan Junior NMO, 1

A $6\times6$ square is given, and a quadratic trinomial with a positive leading coefficient is placed in each of its cells. There are $108$ coefficents in total, and these coefficents are chosen from the set $[-66;47]$, and each coefficient is different from each other. Prove that there exists at least one column such that the polynomial you get by summing the six trinomials in that column has a real root.

2015 IFYM, Sozopol, 4

A plane is cut into unit squares, which are then colored in $n$ colors. A polygon $P$ is created from $n$ unit squares that are connected by their sides. It is known that any cell polygon created by $P$ with translation, covers $n$ unit squares in different colors. Prove that the plane can be covered with copies of $P$ so that each cell is covered exactly once.

2024 Iran MO (3rd Round), 2

Two intelligent people playing a game on the $1403 \times 1403$ table with $1403^2$ cells. The first one in each turn chooses a cell that didn't select before and draws a vertical line segment from the top to the bottom of the cell. The second person in each turn chooses a cell that didn't select before and draws a horizontal line segment from the left to the right of the cell. After $1403^2$ steps the game will be over. The first person gets points equal to the longest verticals line segment and analogously the second person gets point equal to the longest horizonal line segment. At the end the person who gets the more point will win the game. What will be the result of the game?

2025 Euler Olympiad, Round 2, 5

We are given an infinite row of cells extending infinitely in both directions. Some cells contain one or more stones. The total number of stones is finite. At each move, the player performs one of the following three operations: [b]1. [/b]Take three stones from some cell, and add one stone to the cells located one cell to the left and one cell to the right, each skipping one cell in between. [b]2. [/b]Take two stones from some cell, and add one stone to the cell one cell to the left, skipping one cell and one stone to the adjacent cell to the right. [b]3.[/b] Take one stone from each of two adjacent cells, and add one stone to the cell to the right of these two cells. The process ends when no moves are possible. Prove that the process always terminates and the final distribution of stones does not depend on the choices of moves made by the player. [img]https://i.imgur.com/IjcIDOa.png[/img] [i]Proposed by Luka Tsulaia, Georgia[/i]

2022 Iran Team Selection Test, 11

Tags: combinatorics , grid , cell
Consider a table with $n$ rows and $2n$ columns. we put some blocks in some of the cells. After putting blocks in the table we put a robot on a cell and it starts moving in one of the directions right, left, down or up. It can change the direction only when it reaches a block or border. Find the smallest number $m$ such that we can put $m$ blocks on the table and choose a starting point for the robot so it can visit all of the unblocked cells. (the robot can't enter the blocked cells.) Proposed by Seyed Mohammad Seyedjavadi and Alireza Tavakoli

2017 Bulgaria EGMO TST, 2

Let $n$ be a positive integer. Determine the smallest positive integer $k$ such that for any colouring of the cells of a $2n\times k$ table with $n$ colours there are two rows and two columns which intersect in four squares of the same colour.

2024 Iran MO (3rd Round), 2

Consider the main diagonal and the cells above it in an \( n \times n \) grid. These cells form what we call a tabular triangle of length \( n \). We want to place a real number in each cell of a tabular triangle of length \( n \) such that for each cell, the sum of the numbers in the cells in the same row and the same column (including itself) is zero. For example, the sum of the cells marked with a circle is zero. It is known that the number in the topmost and leftmost cell is $1.$ Find all possible ways to fill the remaining cells.

2020 Dürer Math Competition (First Round), P2

How many ways can you fill a table of size $n\times n$ with integers such that each cell contains the total number of even numbers in its row and column other than itself? Two tables are different if they differ in at least one cell.

2022 Bulgarian Autumn Math Competition, Problem 9.4

Given is $2022\times 2022$ cells table. We can select $4$ cells, such that they make the figure $L$ (rotations, symmetric still count) (left one) and put a ball in each of them, or select $4$ cell which makes up the right figure (rotations, symmetric still count) and get one ball from each of them. For which $k$ is it possible in a given moment to be exactly $k$ points in each of the cells

2022 239 Open Mathematical Olympiad, 1

A piece is placed in the lower left-corner cell of the $15 \times 15$ board. It can move to the cells that are adjacent to the sides or the corners of its current cell. It must also alternate between horizontal and diagonal moves $($the first move must be diagonal$).$ What is the maximum number of moves it can make without stepping on the same cell twice$?$

2022 Iran Team Selection Test, 11

Tags: combinatorics , cell , grid
Consider a table with $n$ rows and $2n$ columns. we put some blocks in some of the cells. After putting blocks in the table we put a robot on a cell and it starts moving in one of the directions right, left, down or up. It can change the direction only when it reaches a block or border. Find the smallest number $m$ such that we can put $m$ blocks on the table and choose a starting point for the robot so it can visit all of the unblocked cells. (the robot can't enter the blocked cells.) Proposed by Seyed Mohammad Seyedjavadi and Alireza Tavakoli

2016 IFYM, Sozopol, 4

A plane is cut into unit squares, which are then colored in $n$ colors. A polygon $P$ is created from $n$ unit squares that are connected by their sides. It is known that any cell polygon created by $P$ with translation, covers $n$ unit squares in different colors. Prove that the plane can be covered with copies of $P$ so that each cell is covered exactly once.

2017 Thailand TSTST, 4

The cells of a $8 \times 8$ table are colored either black or white so that each row has a different number of black squares, and each column has a different number of black squares. What is the maximum number of pairs of adjacent cells of different colors?

2008 Bulgarian Autumn Math Competition, Problem 9.4

Stoyan and Nikolai have two $100\times 100$ chess boards. Both of them number each cell with the numbers $1$ to $10000$ in some way. Is it possible that for every two numbers $a$ and $b$, which share a common side in Nikolai's board, these two numbers are at a knight's move distance in Stoyan's board (that is, a knight can move from one of the cells to the other one with a move)? [i]Nikolai Beluhov[/i]