This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

2024 Alborz Mathematical Olympiad, P3

A person is locked in a room with a password-protected computer. If they enter the correct password, the door opens and they are freed. However, the password changes every time it is entered incorrectly. The person knows that the password is always a 10-digit number, and they also know that the password change follows a fixed pattern. This means that if the current password is \( b \) and \( a \) is entered, the new password is \( c \), which is determined by \( b \) and \( a \) (naturally, the person does not know \( c \) or \( b \)). Prove that regardless of the characteristics of this computer, the prisoner can free themselves. Proposed by Reza Tahernejad Karizi

2022 JHMT HS, 3

Andy, Bella, and Chris are playing in a trivia contest. Andy has $21,200$ points, Bella has $23,600$ points, and Chris has $11,200$ points. They have reached the final round, which works as follows: [list] [*] they are given a hint as to what the only question of the round will be about; [*] then, each of them must bet some amount of their points---this bet must be a nonnegative integer (a player does not know any of the other players' bets, and this bet cannot be changed later on); [*] then, they will be shown the question, where they will have $30$ seconds to individually submit a response (a player does not know any of the other players' answers); [*] finally, once time runs out, their responses and bets are revealed---if a player's response is correct, then the number of points they bet will be added to their score, otherwise, it will be subtracted from their score, and whoever ends up having the most points wins the contest (if there is a tie for the win, then the winner is randomly decided). [/list] Suppose that the contestants are currently deciding their bets based on the hint that the question will be about history. Bella knows that she will likely get the question wrong, but she also knows that Andy, who dislikes history, will definitely get it wrong. Knowing this, Bella wagers an amount that will guarantee her a win. Find the maximum number of points Bella could have ended up with.

2025 Alborz Mathematical Olympiad, P2

In the Jordan Building (the Olympiad building of High School Mandegar Alborz), Ali and Khosro are playing a game. First, Ali selects 2025 points on the plane such that no three points are collinear and no four points are concyclic. Then, Khosro selects a point, followed by Ali selecting another point, and then Khosro selects one more point. The circumcircle of these three points is drawn, and the number of points inside the circle is denoted by \( t \). If Khosro's goal is to maximize \( t \) and Ali's goal is to minimize \( t \), and both play optimally, determine the value of \( t \). Proposed by Reza Tahernejad Karizi

2016 Iran MO (3rd Round), 2

A $100 \times 100$ table is given. At the beginning, every unit square has number $"0"$ written in them. Two players playing a game and the game stops after $200$ steps (each player plays $100$ steps). In every step, one can choose a row or a column and add $1$ to the written number in all of it's squares $\pmod 3.$ First player is the winner if more than half of the squares ($5000$ squares) have the number $"1"$ written in them, Second player is the winner if more than half of the squares ($5000$ squares) have the number $"0"$ written in them. Otherwise, the game is draw. Assume that both players play at their best. What will be the result of the game ? [i]Proposed by Mahyar Sefidgaran[/i]

2019 Ecuador NMO (OMEC), 4

Let $n> 1$ be a positive integer. Danielle chooses a number $N$ of $n$ digits but does not tell her students and they must find the sum of the digits of $N$. To achieve this, each student chooses and says once a number of $n$ digits to Danielle and she tells how many digits are in the correct location compared with $N$. Find the minimum number of students that must be in the class to ensure that students have a strategy to correctly find the sum of the digits of $N$ in any case and show a strategy in that case.

2020 China Northern MO, P4

Two students $A$ and $B$ play a game on a $20 \text{ x } 20$ chessboard. It is known that two squares are said to be [i]adjacent[/i] if the two squares have a common side. At the beginning, there is a chess piece in a certain square of the chessboard. Given that $A$ will be the first one to move the chess piece, $A$ and $B$ will alternately move this chess piece to an adjacent square. Also, the common side of any pair of adjacent squares can only be passed once. If the opponent cannot move anymore, then he will be declared the winner (to clarify since the wording wasn’t that good, you lose if you can’t move). Who among $A$ and $B$ has a winning strategy? Justify your claim.

2025 JBMO TST - Turkey, 2

Let $n$ be a positive integer. Aslı and Zehra are playing a game on an $n\times n$ grid. Initially, $10n^2$ stones are placed on some of the unit squares of this grid. On each move (starting with Aslı), Aslı chooses a row or a column that contains at least two squares with different numbers of stones, and Zehra redistributes the stones in that row or column so that after redistribution, the difference in the number of stones between any two squares in that row or column is at most one. Furthermore, this move must change the number of stones in at least one square. For which values of $n$, regardless of the initial placement of the stones, can Aslı guarantee that every square ends up with the same number of stones?

2019 Olympic Revenge, 4

A regular icosahedron is a regular solid of $20$ faces, each in the form of an equilateral triangle, with $12$ vertices, so that each vertex is in $5$ edges. Twelve indistinguishable candies are glued to the vertices of a regular icosahedron (one at each vertex), and four of these twelve candies are special. André and Lucas want to together create a strategy for the following game: • First, André is told which are the four special sweets and he must remove exactly four sweets that are not special from the icosahedron and leave the solid on a table, leaving afterwards without communicating with Lucas. • Later, Sponchi, who wants to prevent Lucas from discovering the special sweets, can pick up the icosahedron from the table and rotate it however he wants. • After Sponchi makes his move, he leaves the room, Lucas enters and he must determine the four special candies out of the eight that remain in the icosahedron. Determine if there is a strategy for which Lucas can always properly discover the four special sweets.

2017 Thailand TSTST, 6

$A$ and $B$ plays a game, with $A$ choosing a positive integer $n \in \{1, 2, \dots, 1001\} = S$. $B$ must guess the value of $n$ by choosing several subsets of $S$, then $A$ will tell $B$ how many subsets $n$ is in. $B$ will do this three times selecting $k_1, k_2$ then $k_3$ subsets of $S$ each. What is the least value of $k_1 + k_2 + k_3$ such that $B$ has a strategy to correctly guess the value of $n$ no matter what $A$ chooses?

2024 Brazil EGMO TST, 2

Let \( m \) and \( n \) be positive integers. Kellem and Carmen play the following game: initially, the number $0$ is on the board. Starting with Kellem and alternating turns, they add powers of \( m \) to the previous number on the board, such that the new value on the board does not exceed \( n \). The player who writes \( n \) wins. Determine, for each pair \( (m, n) \), who has the winning strategy. [b]Note:[/b] A power of \( m \) is a number of the form \( m^k \), where \( k \) is a non-negative integer.

2003 Baltic Way, 8

There are $2003$ pieces of candy on a table. Two players alternately make moves. A move consists of eating one candy or half of the candies on the table (the “lesser half” if there are an odd number of candies). At least one candy must be eaten at each move. The loser is the one who eats the last candy. Which player has a winning strategy?

2024 Indonesia MO, 4

Kobar and Borah are playing on a whiteboard with the following rules: They start with two distinct positive integers on the board. On each step, beginning with Kobar, each player takes turns changing the numbers on the board, either from $P$ and $Q$ to $2P-Q$ and $2Q-P$, or from $P$ and $Q$ to $5P-4Q$ and $5Q-4P$. The game ends if a player writes an integer that is not positive. That player is declared to lose, and the opponent is declared the winner. At the beginning of the game, the two numbers on the board are $2024$ and $A$. If it is known that Kobar does not lose on his first move, determine the largest possible value of $A$ so that Borah can win this game.

2021 Malaysia IMONST 2, 2

Six teams participate in a hockey tournament. Each team plays once against every other team. In each game, a team is awarded $3$ points for a win, $1$ point for a draw, and none for a loss. After the tournament the teams are ranked by total points. No two teams have the same total points. Each team (except the bottom team) has $2$ points more than the team ranking one place lower. Prove that the team that finished fourth has won two games and lost three games.

1999 All-Russian Olympiad, 1

There are three empty jugs on a table. Winnie the Pooh, Rabbit, and Piglet put walnuts in the jugs one by one. They play successively, with the initial determined by a draw. Thereby Winnie the Pooh plays either in the first or second jug, Rabbit in the second or third, and Piglet in the first or third. The player after whose move there are exactly 1999 walnuts loses the games. Show that Winnie the Pooh and Piglet can cooperate so as to make Rabbit lose.

2019 ELMO Shortlist, C1

Elmo and Elmo's clone are playing a game. Initially, $n\geq 3$ points are given on a circle. On a player's turn, that player must draw a triangle using three unused points as vertices, without creating any crossing edges. The first player who cannot move loses. If Elmo's clone goes first and players alternate turns, who wins? (Your answer may be in terms of $n$.) [i]Proposed by Milan Haiman[/i]

2018 All-Russian Olympiad, 5

On the circle, 99 points are marked, dividing this circle into 99 equal arcs. Petya and Vasya play the game, taking turns. Petya goes first; on his first move, he paints in red or blue any marked point. Then each player can paint on his own turn, in red or blue, any uncolored marked point adjacent to the already painted one. Vasya wins, if after painting all points there is an equilateral triangle, all three vertices of which are colored in the same color. Could Petya prevent him?

2016 Germany Team Selection Test, 3

In the beginning there are $100$ integers in a row on the blackboard. Kain and Abel then play the following game: A [i]move[/i] consists in Kain choosing a chain of consecutive numbers; the length of the chain can be any of the numbers $1,2,\dots,100$ and in particular it is allowed that Kain only chooses a single number. After Kain has chosen his chain of numbers, Abel has to decide whether he wants to add $1$ to each of the chosen numbers or instead subtract $1$ from of the numbers. After that the next move begins, and so on. If there are at least $98$ numbers on the blackboard that are divisible by $4$ after a move, then Kain has won. Prove that Kain can force a win in a finite number of moves.

2015 Indonesia MO Shortlist, C9

Given 2015 balls. Astri and Budi will play a game. At first, Astri will choose two different numbers $a$ and $b$ from the set $S = \{ 1, 2, 3, \dots, 30 \}$. Budi will then choose another 2 different numbers $c$ and $d$ from the remaining 28 numbers in set $S$. By taking turns, starting from Astri, they take balls with the following rules: (1) Astri could only take $a$ or $b$ balls. (2) Budi could only take $c$ or $d$ balls. until someone couldn't take any balls satisfying the condition given (and that person will lose). Prove that Budi could choose $c,d$ such that he has a strategy to ensure his victory on this game.

Russian TST 2018, P2

Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector). At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy? [i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]

2010 Rioplatense Mathematical Olympiad, Level 3, 3

Alice and Bob play the following game. To start, Alice arranges the numbers $1,2,\ldots,n$ in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's [i]turn[/i] consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number $k$ at most $k$ times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer $n$, determine who has a winning strategy.

2019 Iran MO (2nd Round), 5

Ali and Naqi are playing a game. At first, they have Polynomial $P(x) = 1+x^{1398}$. Naqi starts. In each turn one can choice natural number $k \in [0,1398]$ in his trun, and add $x^k$ to the polynomial. For example after 2 moves $P$ can be : $P(x) = x^{1398} + x^{300} + x^{100} +1$. If after Ali's turn, there exist $t \in R$ such that $P(t)<0$ then Ali loses the game. Prove that Ali can play forever somehow he never loses the game!

2016 IFYM, Sozopol, 6

Let $f(x)$ be a polynomial, such that $f(x)=x^{2015}+a_1 x^{2014}+...+a_{2014} x+a_{2015}$. Velly and Polly are taking turns, starting from Velly changing the coefficients $a_i$ with real numbers , where each coefficient is changed exactly once. After 2015 turns they calculate the number of real roots of the created polynomial and if the root is only one, then Velly wins, and if it’s not – Polly wins. Which one has a winning strategy?

2016 Bosnia and Herzegovina Team Selection Test, 2

Let $n$ be a positive integer and let $t$ be an integer. $n$ distinct integers are written on a table. Bob, sitting in a room nearby, wants to know whether there exist some of these numbers such that their sum is equal to $t$. Alice is standing in front of the table and she wants to help him. At the beginning, she tells him only the initial sum of all numbers on the table. After that, in every move he says one of the $4$ sentences: $i.$ Is there a number on the table equal to $k$? $ii.$ If a number $k$ exists on the table, erase him. $iii.$ If a number $k$ does not exist on the table, add him. $iv.$ Do the numbers written on the table can be arranged in two sets with equal sum of elements? On these questions Alice answers yes or no, and the operations he says to her she does (if it is possible) and does not tell him did she do it. Prove that in less than $3n$ moves, Bob can find out whether there exist numbers initially written on the board such that their sum is equal to $t$

2016 Regional Competition For Advanced Students, 3

Tags: game theory
On the occasion of the 47th Mathematical Olympiad 2016 the numbers 47 and 2016 are written on the blackboard. Alice and Bob play the following game: Alice begins and in turns they choose two numbers $a$ and $b$ with $a > b$ written on the blackboard, whose difference $a-b$ is not yet written on the blackboard and write this difference additionally on the board. The game ends when no further move is possible. The winner is the player who made the last move. Prove that Bob wins, no matter how they play. (Richard Henner)

2010 IFYM, Sozopol, 6

There are 2 pizzerias in a town, with 2010 pizzas each. Two scientists $A$ and $B$ are taking turns ($A$ is first), where on each turn one can eat as many pizzas as he likes from one of the pizzerias or exactly one pizza from each of the two. The one that has eaten the last pizza is the winner. Which one of them is the winner, provided that they both use the best possible strategy?