This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

2020 IMO Shortlist, N3

A deck of $n > 1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which $n$ does it follow that the numbers on the cards are all equal? [i]Proposed by Oleg Košik, Estonia[/i]

1997 Bosnia and Herzegovina Team Selection Test, 5

$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and: $i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer $ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer $iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer $b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer

2023 Brazil Team Selection Test, 3

Show that for all positive real numbers $a, b, c$, we have that $$\frac{a+b+c}{3}-\sqrt[3]{abc} \leq \max\{(\sqrt{a}-\sqrt{b})^2, (\sqrt{b}-\sqrt{c})^2, (\sqrt{c}-\sqrt{a})^2\}$$

2016 India PRMO, 16

For positive real numbers $x$ and $y$, define their special mean to be average of their arithmetic and geometric means. Find the total number of pairs of integers $(x, y)$, with $x \le y$, from the set of numbers $\{1,2,...,2016\}$, such that the special mean of $x$ and $y$ is a perfect square.

1935 Moscow Mathematical Olympiad, 001

Find the ratio of two numbers if the ratio of their arithmetic mean to their geometric mean is $25 : 24$

2018 Pan-African Shortlist, N6

Prove that there are infinitely many integers $n$ such that both the arithmetic mean of its divisors and the geometric mean of its divisors are integers. (Recall that for $k$ positive real numbers, $a_1, a_2, \dotsc, a_k$, the arithmetic mean is $\frac{a_1 +a_2 +\dotsb +a_k}{k}$, and the geometric mean is $\sqrt[k]{a_1 a_2\dotsb a_k}$.)

2020 IMO, 5

A deck of $n > 1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which $n$ does it follow that the numbers on the cards are all equal? [i]Proposed by Oleg Košik, Estonia[/i]

2007 Puerto Rico Team Selection Test, 6

The geometric mean of a set of $m$ non-negative numbers is the $m$-th root of the product of these numbers. For which positive values of ​​$n$, is there a finite set $S_n$ of $n$ positive integers different such that the geometric mean of any subset of $S_n$ is an integer?

1975 Bundeswettbewerb Mathematik, 3

For $n$positive integers $ x_1,x2,...,x_n$, $a_n$ is their arithmetic and $g_n$ the geometric mean. Consider the statement $S_n$: If $a_n/g_n$ is a positive integer, then $x_1 = x_2 = ··· = x_n$. Prove $S_2$ and disprove $S_n$ for all even $n > 2$.