This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2019 SIMO, Q1

[i]George the grasshopper[/i] lives of the real line, starting at $0$ . He is given the following sequence of numbers: $2, 3, 4, 8, 9, ... ,$ which are all the numbers of the form $2^k$ or $3^l$, $k, l \in \mathbb{N}$, arranged in increasing order. Starting from $2$, for each number $x$ in the sequence in order, he (currently at $a$) must choose to jump to either $a+x$ or $a-x$. Show that [i]George the grasshopper[/i] can jump in a way that he reaches every integer on the real line.