Found problems: 4
2019 IMO Shortlist, C5
A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time:
[list]
[*] Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged.
[/list]
Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.
[i]Proposed by Adrian Beker, Croatia[/i]
2019 SIMO, Q1
[i]George the grasshopper[/i] lives of the real line, starting at $0$ . He is given the following sequence of numbers: $2, 3, 4, 8, 9, ... ,$ which are all the numbers of the form $2^k$ or $3^l$, $k, l \in \mathbb{N}$, arranged in increasing order. Starting from $2$, for each number $x$ in the sequence in order, he (currently at $a$) must choose to jump to either $a+x$ or $a-x$. Show that [i]George the grasshopper[/i] can jump in a way that he reaches every integer on the real line.
2014 EGMO, 5
Let $n$ be a positive integer. We have $n$ boxes where each box contains a non-negative number of pebbles. In each move we are allowed to take two pebbles from a box we choose, throw away one of the pebbles and put the other pebble in another box we choose. An initial configuration of pebbles is called [i]solvable[/i] if it is possible to reach a configuration with no empty box, in a finite (possibly zero) number of moves. Determine all initial configurations of pebbles which are not solvable, but become solvable when an additional pebble is added to a box, no matter which box is chosen.
2019 IMO, 3
A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time:
[list]
[*] Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged.
[/list]
Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.
[i]Proposed by Adrian Beker, Croatia[/i]