This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 583

1995 India National Olympiad, 6

Find all primes $p$ for which the quotient \[ \dfrac{2^{p-1} - 1 }{p} \] is a square.

1988 Canada National Olympiad, 1

For what real values of $k$ do $1988x^2 + kx + 8891$ and $8891x^2 + kx + 1988$ have a common zero?

2011 Nordic, 4

Show that for any integer $n \ge 2$ the sum of the fractions $\frac{1}{ab}$, where $a$ and $b$ are relatively prime positive integers such that $a < b \le n$ and $a+b > n$, equals $\frac{1}{2}$. (Integers $a$ and $b$ are called relatively prime if the greatest common divisor of $a$ and $b$ is $1$.)

2004 APMO, 1

Determine all finite nonempty sets $S$ of positive integers satisfying \[ {i+j\over (i,j)}\qquad\mbox{is an element of S for all i,j in S}, \] where $(i,j)$ is the greatest common divisor of $i$ and $j$.

2000 All-Russian Olympiad, 8

One hundred natural numbers whose greatest common divisor is $1$ are arranged around a circle. An allowed operation is to add to a number the greatest common divisor of its two neighhbors. Prove that we can make all the numbers pairwise copirme in a finite number of moves.

2016 PAMO, 3

For any positive integer $n$, we define the integer $P(n)$ by : $P(n)=n(n+1)(2n+1)(3n+1)...(16n+1)$. Find the greatest common divisor of the integers $P(1)$, $P(2)$, $P(3),...,P(2016)$.

2007 Germany Team Selection Test, 3

Let $ a > b > 1$ be relatively prime positive integers. Define the weight of an integer $ c$, denoted by $ w(c)$ to be the minimal possible value of $ |x| \plus{} |y|$ taken over all pairs of integers $ x$ and $ y$ such that \[ax \plus{} by \equal{} c.\] An integer $ c$ is called a [i]local champion [/i]if $ w(c) \geq w(c \pm a)$ and $ w(c) \geq w(c \pm b)$. Find all local champions and determine their number. [i]Proposed by Zoran Sunic, USA[/i]

1990 USAMO, 3

Suppose that necklace $\, A \,$ has 14 beads and necklace $\, B \,$ has 19. Prove that for any odd integer $n \geq 1$, there is a way to number each of the 33 beads with an integer from the sequence \[ \{ n, n+1, n+2, \dots, n+32 \} \] so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a ``necklace'' is viewed as a circle in which each bead is adjacent to two other beads.)

1982 Austrian-Polish Competition, 1

Find all pairs $(n, m)$ of positive integers such that $gcd ((n + 1)^m - n, (n + 1)^{m+3} - n) > 1$.

2011 ITAMO, 2

A sequence of positive integers $a_1, a_2,\ldots, a_n$ is called [i]ladder[/i] of length $n$ if it consists of $n$ consecutive integers in ascending order. (a) Prove that for every positive integer $n$ there exist two ladders of length $n$, with no elements in common, $a_1, a_2,\ldots, a_n$ and $b_1, b_2,\ldots, b_n$, such that for all $i$ between $1$ and $n$, the greatest common divisor of $a_i$ and $b_i$ is equal to $1$. (b) Prove that for every positive integer $n$ there exist two ladders of length $n$, with no elements in common, $a_1, a_2,\ldots, a_n$ and $b_1, b_2,\ldots, b_n$, such that for all $i$ between $1$ and $n$, the greatest common divisor of $a_i$ and $b_i$ is greater than $1$.

2016 Israel Team Selection Test, 4

Find the greatest common divisor of all numbers of the form $(2^{a^2}\cdot 19^{b^2} \cdot 53^{c^2} + 8)^{16} - 1$ where $a,b,c$ are integers.

2014 Costa Rica - Final Round, 3

Find all possible pairs of integers $ a$ and $ b$ such that $ab = 160 + 90 (a,b)$, where $(a, b)$ is the greatest common divisor of $ a$ and $ b$.

2011 NIMO Problems, 7

Let $P(x) = x^2 - 20x - 11$. If $a$ and $b$ are natural numbers such that $a$ is composite, $\gcd(a, b) = 1$, and $P(a) = P(b)$, compute $ab$. Note: $\gcd(m, n)$ denotes the greatest common divisor of $m$ and $n$. [i]Proposed by Aaron Lin [/i]

JOM 2025, 1

Is it possible for Pingu to choose $2025$ positive integers $a_1, ..., a_{2025}$ such that: 1. The sequence $a_i$ is increasing; 2. $\gcd(a_1,a_2)>\gcd(a_2,a_3)>...>\gcd(a_{2024},a_{2025})>\gcd(a_{2025},a_1)>1$? [i](Proposed by Tan Rui Xuen and Ivan Chan Guan Yu)[/i]

2008 ISI B.Stat Entrance Exam, 9

Suppose $S$ is the set of all positive integers. For $a,b \in S$, define \[a * b=\frac{\text{lcm}[a,b]}{\text{gcd}(a,b)}\] For example $8*12=6$. Show that [b]exactly two[/b] of the following three properties are satisfied: (i) If $a,b \in S$, then $a*b \in S$. (ii) $(a*b)*c=a*(b*c)$ for all $a,b,c \in S$. (iii) There exists an element $i \in S$ such that $a *i =a$ for all $a \in S$.

2011 India IMO Training Camp, 3

Let $T$ be a non-empty finite subset of positive integers $\ge 1$. A subset $S$ of $T$ is called [b]good [/b] if for every integer $t\in T$ there exists an $s$ in $S$ such that $gcd(t,s) >1$. Let \[A={(X,Y)\mid X\subseteq T,Y\subseteq T,gcd(x,y)=1 \text{for all} x\in X, y\in Y}\] Prove that : $a)$ If $X_0$ is not [b]good[/b] then the number of pairs $(X_0,Y)$ in $A$ is [b]even[/b]. $b)$ the number of good subsets of $T$ is [b]odd[/b].

2025 Belarusian National Olympiad, 10.4

Is it possible to assign every integral point $(x,y)$ of the plane a positive integer $a_{x,y}$ such that for every two integers $i$ and $j$ the following equality holds $$a_{i,j}=\gcd(a_{i-1,j},a_{i+1,j})+\gcd(a_{i,j-1},a_{i,j+1})$$ [i]M. Shutro[/i]

2012 Indonesia TST, 4

Determine all integer $n > 1$ such that \[\gcd \left( n, \dfrac{n-m}{\gcd(n,m)} \right) = 1\] for all integer $1 \le m < n$.

2009 All-Russian Olympiad, 1

The denominators of two irreducible fractions are 600 and 700. Find the minimum value of the denominator of their sum (written as an irreducible fraction).

2004 Korea - Final Round, 2

Prove that the equation $3y^2 = x^4 + x$ has no positive integer solutions.

2003 Mexico National Olympiad, 5

Some cards each have a pair of numbers written on them. There is just one card for each pair $(a,b)$ with $1 \leq a < b \leq 2003$. Two players play the following game. Each removes a card in turn and writes the product $ab$ of its numbers on the blackboard. The first player who causes the greatest common divisor of the numbers on the blackboard to fall to $1$ loses. Which player has a winning strategy?

2022 Germany Team Selection Test, 1

Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.

2017 ELMO Shortlist, 1

Let $a_1,a_2,\dots, a_n$ be positive integers with product $P,$ where $n$ is an odd positive integer. Prove that $$\gcd(a_1^n+P,a_2^n+P,\dots, a_n^n+P)\le 2\gcd(a_1,\dots, a_n)^n.$$ [i]Proposed by Daniel Liu[/i]

PEN H Problems, 4

Find all pairs $(x, y)$ of positive rational numbers such that $x^{2}+3y^{2}=1$.

2012 Junior Balkan MO, 4

Find all positive integers $x,y,z$ and $t$ such that $2^x3^y+5^z=7^t$.