This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2024 Turkey EGMO TST, 1

Let $ABC$ be a triangle and its circumcircle be $\omega$. Let $I$ be the incentre of the $ABC$. Let the line $BI$ meet $AC$ at $E$ and $\omega$ at $M$ for the second time. The line $CI$ meet $AB$ at $F$ and $\omega$ at $N$ for the second time. Let the circumcircles of $BFI$ and $CEI$ meet again at point $K$. Prove that the lines $BN$, $CM$, $AK$ are concurrent.

2024 India Iran Friendly Math Competition, 2

Let $ABCD$ be a cyclic quadrilateral with circumcentre $O_1$. The diagonals $AC$ and $BD$ meet at point $P$. Suppose the four incentres of triangles $PAB, PBC, PCD, PDA$ lie on a circle with centre $O_2$. Prove that $P, O_1, O_2$ are collinear. [i]Proposed by Shantanu Nene[/i]

2024 Bulgaria MO Regional Round, 12.1

Let $ABC$ be an acute triangle with midpoint $M$ of $AB$. The point $D$ lies on the segment $MB$ and $I_1, I_2$ denote the incenters of $\triangle ADC$ and $\triangle BDC$. Given that $\angle I_1MI_2=90^{\circ}$, show that $CA=CB$.