This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2002 AMC 12/AHSME, 6

Tags: inequalities
For how many positive integers $ m$ does there exist at least one positive integer $ n$ such that $ m\cdot n \le m \plus{} n$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}$ infinitely many

2016 Hanoi Open Mathematics Competitions, 10

Let $h_a, h_b, h_c$ and $r$ be the lengths of altitudes and radius of the inscribed circle of $\vartriangle ABC$, respectively. Prove that $h_a + 4h_b + 9h_c > 36r$.

2014 National Olympiad First Round, 7

Tags: inequalities
If $ (x^2+1)(y^2+1)+9=6(x+y)$ where $x,y$ are real numbers, what is $x^2+y^2$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 3 $

2024 Irish Math Olympiad, P8

Tags: inequalities
Let $a,b,c$ be positive real numbers with $a \leq c$ and $b \leq c$. Prove that $$ (a +10b)(b +22c)(c +7a) \geq 2024 abc.$$

1985 Miklós Schweitzer, 1

Tags: inequalities
[b]1.[/b] Some proper partitions $P_1, \dots , P_n$ of a finite set $S$ (that is, partitions containing at least two parts) are called [i]independent[/i] if no matter how we choose one class from each partition, the intersection of the chosen classes is nonempty. Show that if the inequality $\frac{\left | S \right | }{2} < \left |P_1 \right | \dots \left |P_n \right |\qquad \quad (*)$ holds for some independent partitions, then $P_1, \dots , P_n$ is maximal in the sense that there is no partition $P$ such that $P,P_1, \dots , P_n$ are independent. On the other hand, show that inequality $(*)$ is not necessary for this maximality. ([b]C.20[/b]) [E. Gesztelyi]

2024 Baltic Way, 4

Find the largest real number $\alpha$ such that, for all non-negative real numbers $x$, $y$ and $z$, the following inequality holds: \[ (x+y+z)^3 + \alpha (x^2z + y^2x + z^2y) \geq \alpha (x^2y + y^2z + z^2x). \]

2012 Abels Math Contest (Norwegian MO) Final, 4a

Two positive numbers $x$ and $y$ are given. Show that $\left(1 +\frac{x}{y} \right)^3 + \left(1 +\frac{y}{x}\right)^3 \ge 16$.

1998 Chile National Olympiad, 4

a) Prove that for any nonnegative real $x$, holds $$x^{\frac32} + 6x^{\frac54} + 8x^{\frac34}\ge 15x.$$ b) Determine all x for which the equality holds

2010 Moldova Team Selection Test, 2

Let $ x_1, x_2, \ldots, x_n$ be positive real numbers with sum $ 1$. Find the integer part of: $ E\equal{}x_1\plus{}\dfrac{x_2}{\sqrt{1\minus{}x_1^2}}\plus{}\dfrac{x_3}{\sqrt{1\minus{}(x_1\plus{}x_2)^2}}\plus{}\cdots\plus{}\dfrac{x_n}{\sqrt{1\minus{}(x_1\plus{}x_2\plus{}\cdots\plus{}x_{n\minus{}1})^2}}$

2012 Singapore Senior Math Olympiad, 4

Let $a_1, a_2, ..., a_n, a_{n+1}$ be a finite sequence of real numbers satisfying $a_0 = a_{n+1} = 0$ and $|a_{k-1} - 2a_{k} + a_{k+1}| \leq 1$ for $k = 1, 2, ..., n$ Prove that for $k=0, 1, ..., n+1,$ $|a_k| \leq \frac{k(n+1-k)}{2}$

1981 All Soviet Union Mathematical Olympiad, 318

The points $C_1, A_1, B_1$ belong to $[AB], [BC], [CA]$ sides, respectively, of the triangle $ABC$ . $$\frac{|AC_1|}{|C_1B| }=\frac{ |BA_1|}{|A_1C| }= \frac{|CB_1|}{|B_1A| }= \frac{1}{3}$$ Prove that the perimeter $P$ of the triangle $ABC$ and the perimeter $p$ of the triangle $A_1B_1C_1$ , satisfy inequality $$\frac{P}{2} < p < \frac{3P}{4}$$

2022 South East Mathematical Olympiad, 5

Let $a,b,c,d$ be non-negative integers. $(1)$ If $a^2+b^2-cd^2=2022 ,$ find the minimum of $a+b+c+d;$ $(1)$ If $a^2-b^2+cd^2=2022 ,$ find the minimum of $a+b+c+d .$

2015 Federal Competition For Advanced Students, 1

Let $a$, $b$, $c$, $d$ be positive numbers. Prove that $$(a^2 + b^2 + c^2 + d^2)^2 \ge (a+b)(b+c)(c+d)(d+a)$$ When does equality hold? (Georg Anegg)

1985 Iran MO (2nd round), 3

Let $f: \mathbb R \to \mathbb R,g: \mathbb R \to \mathbb R$ and $\varphi: \mathbb R \to \mathbb R$ be three ascendant functions such that \[f(x) \leq g(x) \leq \varphi(x) \qquad \forall x \in \mathbb R.\] Prove that \[f(f(x)) \leq g(g(x)) \leq \varphi(\varphi(x)) \qquad \forall x \in \mathbb R.\] [i]Note. The function is $k(x)$ ascendant if for every $ x,y \in D_k, x \leq {y}$ we have $g(x)\leq{g(y)}$.[/i]

2005 MOP Homework, 4

Tags: inequalities
Let $x_1$, $x_2$, ..., $x_5$ be nonnegative real numbers such that $x_1+x_2+x_3+x_4+x_5=5$. Determine the maximum value of $x_1x_2+x_2x_3+x_3x_4+x_4x_5$.

2002 Estonia National Olympiad, 3

Prove that for positive real numbers $a, b$ and $c$ the inequality $2(a^4+b^4+c^4) < (a^2+b^2+c^2)^2$ holds if and only if $a,b,c$ are the sides of a triangle.

2016 Korea Junior Math Olympiad, 7

positive integers $a_1, a_2, . . . , a_9$ satisfying $a_1+a_2+ . . . +a_9 =90$ find maximum of $$\frac{1^{a_1} \cdot 2^{a_2} \cdot . . . \cdot 9^{a_9}}{a_1! \cdot a_2! \cdot . . . \cdot a_9!}$$ [hide=mention] I was really shocked because there are no inequality problems at KJMO and the test difficulty even more lower...[/hide]

2019 JBMO Shortlist, A5

Let $a, b, c, d$ be positive real numbers such that $abcd = 1$. Prove the inequality $\frac{1}{a^3 + b + c + d} +\frac{1}{a + b^3 + c + d}+\frac{1}{a + b + c^3 + d} +\frac{1}{a + b + c + d^3} \leq \frac{a+b+c+d}{4}$ [i]Proposed by Romania[/i]

1989 IMO Longlists, 92

Tags: inequalities
Prove that $ a < b$ implies that $ a^3 \minus{} 3a \leq b^3 \minus{} 3b \plus{} 4.$ When does equality occur?

2012 National Olympiad First Round, 35

Tags: inequalities
For every positive real pair $(x,y)$ satisfying the equation $x^3+y^4 = x^2y$, if the greatest value of $x$ is $A$, and the greatest value of $y$ is $B$, then $A/B = ?$ $ \textbf{(A)}\ \frac{2}{3} \qquad \textbf{(B)}\ \frac{512}{729} \qquad \textbf{(C)}\ \frac{729}{1024} \qquad \textbf{(D)}\ \frac{3}{4} \qquad \textbf{(E)}\ \frac{243}{256}$

2014 USA TSTST, 3

Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.

1991 AIME Problems, 3

Expanding $(1+0.2)^{1000}$ by the binomial theorem and doing no further manipulation gives \begin{eqnarray*} &\ & \binom{1000}{0}(0.2)^0+\binom{1000}{1}(0.2)^1+\binom{1000}{2}(0.2)^2+\cdots+\binom{1000}{1000}(0.2)^{1000}\\ &\ & = A_0 + A_1 + A_2 + \cdots + A_{1000}, \end{eqnarray*} where $A_k = \binom{1000}{k}(0.2)^k$ for $k = 0,1,2,\ldots,1000$. For which $k$ is $A_k$ the largest?

2001 India IMO Training Camp, 2

Two symbols $A$ and $B$ obey the rule $ABBB = B$. Given a word $x_1x_2\ldots x_{3n+1}$ consisting of $n$ letters $A$ and $2n+1$ letters $B$, show that there is a unique cyclic permutation of this word which reduces to $B$.

2018 Cyprus IMO TST, Source

[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url] [url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square. [url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$. [url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value. [url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$. (a) Prove that $$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence: $$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$

2016 Thailand TSTST, 2

Find the number of sequences $a_1,a_2,\dots,a_{100}$ such that $\text{(i)}$ There exists $i\in\{1,2,\dots,100\}$ such that $a_i=3$, and $\text{(ii)}$ $|a_i-a_{i+1}|\leq 1$ for all $1\leq i<100$.