This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1998 Israel National Olympiad, 5

(a) Find two real numebrs $a,b$ such that $|ax+b-\sqrt{x}| \le \frac{1}{24}$ for $1 \le x \le 4$. (b) Prove that the constant $\frac{1}{24}$ cannot be replaced by a smaller one.

2006 MOP Homework, 1

Let a,b, and c be positive reals. Prove: $\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^{2}\ge (a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

2005 China Team Selection Test, 2

Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$ where $[x]$ denotes the largest integer not exceeding $x$.

2015 Irish Math Olympiad, 6

Suppose $x,y$ are nonnegative real numbers such that $x + y \le 1$. Prove that $8xy \le 5x(1 - x) + 5y(1 - y)$ and determine the cases of equality.

2025 Iran MO (2nd Round), 5

Find all functions $f:\mathbb{R}^+ \to \mathbb{R}$ such that for all $x,y,z>0$ $$ 3(x^3+y^3+z^3)\geq f(x+y+z)\cdot f(xy+yz+xz) \geq (x+y+z)(xy+yz+xz). $$

2004 Baltic Way, 2

Let $ P(x)$ be a polynomial with a non-negative coefficients. Prove that if the inequality $ P\left(\frac {1}{x}\right)P(x)\geq 1$ holds for $ x \equal{} 1$, then this inequality holds for each positive $ x$.

2020 Jozsef Wildt International Math Competition, W42

Tags: inequalities
If $a,b,c$ are non-negative real numbers such that $a+b+c=3m,(m\ge1)$ then prove that $$(a^a+b^a+c^a)(a^b+b^b+c^b)(a^c+b^c+c^c)\ge27m^{3m}$$ [i]Proposed by Dorin Mărghidanu[/i]

2012 Iran MO (3rd Round), 1

$P(x)$ is a nonzero polynomial with integer coefficients. Prove that there exists infinitely many prime numbers $q$ such that for some natural number $n$, $q|2^n+P(n)$. [i]Proposed by Mohammad Gharakhani[/i]

2011 Junior Balkan Team Selection Tests - Romania, 1

Determine a) the smallest number b) the biggest number $n \ge 3$ of non-negative integers $x_1, x_2, ... , x_n$, having the sum $2011$ and satisfying: $x_1 \le | x_2 - x_3 | , x_2 \le | x_3 - x_4 | , ... , x_{n-2} \le | x_{n-1} -x_n | , x_{n-1} \le | x_n - x_1 |$ and $x_n \le | x_1 - x_2 | $.

2006 Mathematics for Its Sake, 2

For three real numbers $ a,b,c>1, $ prove the inequality: $ \log_{a^2b} a +\log_{b^2c} b +\log_{c^2a} c\le 1. $

1993 Tournament Of Towns, (398) 6

If it is known that the equation $$x^4+ax^3+2x^2+bx+1=0$$ has a (real) root, prove the inequality $$a^2+b^2 \ge 8.$$ (A Egorov)

1999 Hungary-Israel Binational, 1

$ c$ is a positive integer. Consider the following recursive sequence: $ a_1\equal{}c, a_{n\plus{}1}\equal{}ca_{n}\plus{}\sqrt{(c^2\minus{}1)(a_n^2\minus{}1)}$, for all $ n \in N$. Prove that all the terms of the sequence are positive integers.

2013 Harvard-MIT Mathematics Tournament, 13

Tags: inequalities , hmmt
Find the smallest positive integer $n$ such that $\dfrac{5^{n+1}+2^{n+1}}{5^n+2^n}>4.99$.

1991 USAMO, 4

Tags: inequalities
Let $a = \frac{m^{m+1} + n^{n+1}}{m^m + n^n}$, where $m$ and $n$ are positive integers. Prove that $a^m + a^n \geq m^m + n^n$.

2011 Turkey Junior National Olympiad, 1

Show that \[1 \leq \frac{(x+y)(x^3+y^3)}{(x^2+y^2)^2} \leq \frac98\] holds for all positive real numbers $x,y$.

2010 Contests, 2

For a positive integer $n$, we define the function $f_n(x)=\sum_{k=1}^n |x-k|$ for all real numbers $x$. For any two-digit number $n$ (in decimal representation), determine the set of solutions $\mathbb{L}_n$ of the inequality $f_n(x)<41$. [i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 2)[/i]

2021 Regional Olympiad of Mexico Southeast, 3

Let $a, b, c$ positive reals such that $a+b+c=1$. Prove that $$\min\{a(1-b),b(1-c),c(1-a)\}\leq \frac{1}{4}$$ $$\max\{a(1-b),b(1-c),c(1-a)\}\geq \frac{2}{9}$$

2018 Flanders Math Olympiad, 2

Prove that for every acute angle $\alpha$, $\sin (\cos \alpha) < \cos(\sin \alpha)$.

2009 Federal Competition For Advanced Students, P1, 1

Show that for all positive integer $n$ the following inequality holds $3^{n^2} > (n!)^4$ .

2013 Romania Team Selection Test, 3

Let $S$ be the set of all rational numbers expressible in the form \[\frac{(a_1^2+a_1-1)(a_2^2+a_2-1)\ldots (a_n^2+a_n-1)}{(b_1^2+b_1-1)(b_2^2+b_2-1)\ldots (b_n^2+b_n-1)}\] for some positive integers $n, a_1, a_2 ,\ldots, a_n, b_1, b_2, \ldots, b_n$. Prove that there is an infinite number of primes in $S$.

2018 Taiwan TST Round 3, 1

Tags: inequalities
Suppose that $x,y$ are distinct positive reals, and $n>1$ is a positive integer. If \[x^n-y^n=x^{n+1}-y^{n+1},\] then show that \[1<x+y<\frac{2n}{n+1}.\]

2019 European Mathematical Cup, 2

Let $(x_n)_{n\in \mathbb{N}}$ be a sequence defined recursively such that $x_1=\sqrt{2}$ and $$x_{n+1}=x_n+\frac{1}{x_n}\text{ for }n\in \mathbb{N}.$$ Prove that the following inequality holds: $$\frac{x_1^2}{2x_1x_2-1}+\frac{x_2^2}{2x_2x_3-1}+\dotsc +\frac{x_{2018}^2}{2x_{2018}x_{2019}-1}+\frac{x_{2019}^2}{2x_{2019}x_{2020}-1}>\frac{2019^2}{x_{2019}^2+\frac{1}{x_{2019}^2}}.$$ [i]Proposed by Ivan Novak[/i]

2013 Singapore Senior Math Olympiad, 3

Let $b_1,b_2,... $ be a sequence of positive real numbers such that for each $ n\ge 1$, $$b_{n+1}^2 \ge \frac{b_1^2}{1^3}+\frac{b_2^2}{2^3}+...+\frac{b_n^2}{n^3}$$ Show that there is a positive integer $M$ such that $$\sum_{n=1}^M \frac{b_{n+1}}{b_1+b_2+...+b_n} > \frac{2013}{1013}$$

2019 Bangladesh Mathematical Olympiad, 4

$A$ is a positive real number.$n$ is positive integer number.Find the set of possible values of the infinite sum $x_0^n+x_1^n+x_2^n+...$ where $x_0,x_1,x_2...$ are all positive real numbers so that the infinite series $x_0+x_1+x_2+...$ has sum $A$.

1999 Brazil Team Selection Test, Problem 2

In a triangle $ABC$, the bisector of the angle at $A$ of a triangle $ABC$ intersects the segment $BC$ and the circumcircle of $ABC$ at points $A_1$ and $A_2$, respectively. Points $B_1,B_2,C_1,C_2$ are analogously defined. Prove that $$\frac{A_1A_2}{BA_2+CA_2}+\frac{B_1B_2}{CB_2+AB_2}+\frac{C_1C_2}{AC_2+BC_2}\ge\frac34.$$