This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2021 Indonesia MO, 5

Let $P(x) = x^2 + rx + s$ be a polynomial with real coefficients. Suppose $P(x)$ has two distinct real roots, both of which are less than $-1$ and the difference between the two is less than $2$. Prove that $P(P(x)) > 0$ for all real $x$.

1987 IMO Longlists, 62

Let $l, l'$ be two lines in $3$-space and let $A,B,C$ be three points taken on $l$ with $B$ as midpoint of the segment $AC$. If $a, b, c$ are the distances of $A,B,C$ from $l'$, respectively, show that $b \leq \sqrt{ \frac{a^2+c^2}{2}}$, equality holding if $l, l'$ are parallel.

2009 Germany Team Selection Test, 3

Let $ a$, $ b$, $ c$, $ d$ be positive real numbers such that $ abcd \equal{} 1$ and $ a \plus{} b \plus{} c \plus{} d > \dfrac{a}{b} \plus{} \dfrac{b}{c} \plus{} \dfrac{c}{d} \plus{} \dfrac{d}{a}$. Prove that \[ a \plus{} b \plus{} c \plus{} d < \dfrac{b}{a} \plus{} \dfrac{c}{b} \plus{} \dfrac{d}{c} \plus{} \dfrac{a}{d}\] [i]Proposed by Pavel Novotný, Slovakia[/i]

2005 Moldova National Olympiad, 11.2

Let $a$ and $b$ be two real numbers. Find these numbers given that the graphs of $f:\mathbb{R} \to \mathbb{R} , f(x)=2x^4-a^2x^2+b-1$ and $g:\mathbb{R} \to \mathbb{R} ,g(x)=2ax^3-1$ have exactly two points of intersection.

1988 AMC 12/AHSME, 23

The six edges of a tetrahedron $ABCD$ measure $7$, $13$, $18$, $27$, $36$ and $41$ units. If the length of edge $AB$ is $41$, then the length of edge $CD$ is $ \textbf{(A)}\ 7\qquad\textbf{(B)}\ 13\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 36 $

1994 India Regional Mathematical Olympiad, 8

Tags: inequalities
If $a,b,c$ are positive real numbers such that $a+b+c = 1$, prove that \[ (1+a)(1+b)(1+c) \geq 8 (1-a)(1-b)(1-c) . \]

2013 Moldova Team Selection Test, 1

Tags: inequalities
For any positive real numbers $x,y,z$, prove that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq \frac{z(x+y)}{y(y+z)} + \frac{x(z+y)}{z(x+z)} + \frac{y(x+z)}{x(x+y)}$

2004 Turkey Junior National Olympiad, 3

Tags: inequalities
On the evening, more than $\frac 13$ of the students of a school are going to the cinema. On the same evening, More than $\frac {3}{10}$ are going to the theatre, and more than $\frac {4}{11}$ are going to the concert. At least how many students are there in this school?

2013 Czech-Polish-Slovak Junior Match, 5

Let $a, b, c$ be positive real numbers for which $ab + ac + bc \ge a + b + c$. Prove that $a + b + c \ge 3$.

2011 Romania Team Selection Test, 4

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.

1979 IMO Longlists, 49

Let there be given two sequences of integers $f_i(1), f_i(2), \cdots (i = 1, 2)$ satisfying: $(i) f_i(nm) = f_i(n)f_i(m)$ if $\gcd(n,m) = 1$; $(ii)$ for every prime $P$ and all $k = 2, 3, 4, \cdots$, $f_i(P^k) = f_i(P)f_i(P^{k-1}) - P^2f(P^{k-2}).$ Moreover, for every prime $P$: $(iii) f_1(P) = 2P,$ $(iv) f_2(P) < 2P.$ Prove that $|f_2(n)| < f_1(n)$ for all $n$.

2002 Belarusian National Olympiad, 2

Given rational numbers $a_1,...,a_n$ such that $\sum_{i=1}^n \{ka_i\}<\frac{n}{2}$ for any positive integer $k$. a) Prove that at least one of $a_1,...,a_n$ is integer. b) Is the previous statement true, if the number $\frac{n}{2}$ is replaced by the greater number? (Here $\{x\}$ means a fractional part of $x$.) (N. Selinger)

2015 Romania National Olympiad, 1

Find all real numbers $x, y,z,t \in [0, \infty)$ so that $$x + y + z \le t, \,\,\, x^2 + y^2 + z^2 \ge t \,\,\, and \,\,\,x^3 + y^3 + z^3 \le t.$$

2009 USAMTS Problems, 5

Let $ABC$ be a triangle with $AB = 3, AC = 4,$ and $BC = 5$, let $P$ be a point on $BC$, and let $Q$ be the point (other than $A$) where the line through $A$ and $P$ intersects the circumcircle of $ABC$. Prove that \[PQ\le \frac{25}{4\sqrt{6}}.\]

2017 Miklós Schweitzer, 8

Let the base $2$ representation of $x\in[0;1)$ be $x=\sum_{i=0}^\infty \frac{x_i}{2^{i+1}}$. (If $x$ is dyadically rational, i.e. $x\in\left\{\frac{k}{2^n}\,:\, k,n\in\mathbb{Z}\right\}$, then we choose the finite representation.) Define function $f_n:[0;1)\to\mathbb{Z}$ by $$f_n(x)=\sum_{j=0}^{n-1}(-1)^{\sum_{i=0}^j x_i}.$$Does there exist a function $\varphi:[0;\infty)\to[0;\infty)$ such that $\lim_{x\to\infty} \varphi(x)=\infty$ and $$\sup_{n\in\mathbb{N}}\int_0^1 \varphi(|f_n(x)|)\mathrm{d}x<\infty\, ?$$

2002 Romania Team Selection Test, 2

Let $n\geq 4$ be an integer, and let $a_1,a_2,\ldots,a_n$ be positive real numbers such that \[ a_1^2+a_2^2+\cdots +a_n^2=1 . \] Prove that the following inequality takes place \[ \frac{a_1}{a_2^2+1}+\cdots +\frac{a_n}{a_1^2+1} \geq \frac{4}{5}\left( a_1 \sqrt{a_1}+\cdots +a_n \sqrt{a_n} \right)^2 . \] [i]Bogdan Enescu, Mircea Becheanu[/i]

1993 AIME Problems, 4

How many ordered four-tuples of integers $(a,b,c,d)$ with $0 < a < b < c < d < 500$ satisfy $a + d = b + c$ and $bc - ad = 93$?

1998 Denmark MO - Mohr Contest, 2

For any real number$m$, the equation $$x^2+(m-2)x- (m+3)=0$$ has two solutions, denoted $x_1 $and $ x_2$. Determine $m$ such that $x_1^2+x_2^2$ is the minimum possible.

2010 Contests, 3

Positive integer numbers $k$ and $n$ satisfy the inequality $k > n!$. Prove that there exist pairwisely different prime numbers $p_1, p_2, \ldots, p_n$ which are divisors of the numbers $k+1, k+2, \ldots, k+n$ respectively (i.e. $p_i|k+i$).

2015 Hanoi Open Mathematics Competitions, 9

Let $a, b,c$ be positive numbers with $abc = 1$. Prove that $a^3 + b^3 + c^3 + 2[(ab)^3 + (bc)^3 + (ca)^3] \ge 3(a^2b + b^2c + c^2a)$.

1975 Poland - Second Round, 4

Prove that the non-negative numbers $ a_1, a_2, \ldots, a_n $ ($ n = 1, 2, \ldots $) satisfy the inequality $ x_1, x_2, \ldots, x_n $ for any real numbers $$ \left( \sum_{i=1}^n a_i x_i^2 \right)^2 \leq \sum_{i=1}^n a_i x_i^4.$$ it is necessary and sufficient that $ \sum_{i=1}^n a_i \leq 1 $.

2013 Tournament of Towns, 3

Denote by $(a, b)$ the greatest common divisor of $a$ and $b$. Let $n$ be a positive integer such that $(n, n + 1) < (n, n + 2) <... < (n,n + 35)$. Prove that $(n, n + 35) < (n,n + 36)$.

2018 JBMO Shortlist, A1

Let $x,y,z$ be positive real numbers . Prove: $\frac{x}{\sqrt{\sqrt[4]{y}+\sqrt[4]{z}}}+\frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}}+\frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}}\geq \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^7}}{\sqrt{2\sqrt{27}}}$

1985 Iran MO (2nd round), 1

Inscribe in the triangle $ABC$ a triangle with minimum perimeter.

1985 IMO Longlists, 42

Prove that the product of two sides of a triangle is always greater than the product of the diameters of the inscribed circle and the circumscribed circle.