This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2012 Korea National Olympiad, 2

There are $n$ students $ A_1 , A_2 , \cdots , A_n $ and some of them shaked hands with each other. ($ A_i $ and $ A_j$ can shake hands more than one time.) Let the student $ A_i $ shaked hands $ d_i $ times. Suppose $ d_1 + d_2 + \cdots + d_n > 0 $. Prove that there exist $ 1 \le i < j \le n $ satisfying the following conditions: (a) Two students $ A_i $ and $ A_j $ shaked hands each other. (b) $ \frac{(d_1 + d_2 + \cdots + d_n ) ^2 }{n^2 } \le d_i d_j $

1938 Eotvos Mathematical Competition, 2

Prove that for all integers $n > 1$, $$\frac{1}{n}+\frac{1}{n + 1}+ ...+\frac{1}{n^2- 1}+\frac{1}{n^2} > 1$$

1994 USAMO, 4

Let $\, a_1, a_2, a_3, \ldots \,$ be a sequence of positive real numbers satisfying $\, \sum_{j=1}^n a_j \geq \sqrt{n} \,$ for all $\, n \geq 1$. Prove that, for all $\, n \geq 1, \,$ \[ \sum_{j=1}^n a_j^2 > \frac{1}{4} \left( 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right). \]

2004 Romania National Olympiad, 3

Let $H$ be the orthocenter of the acute triangle $ABC$. Let $BB'$ and $CC'$ be altitudes of the triangle ($B^{\prime} \in AC$, $C^{\prime} \in AB$). A variable line $\ell$ passing through $H$ intersects the segments $[BC']$ and $[CB']$ in $M$ and $N$. The perpendicular lines of $\ell$ from $M$ and $N$ intersect $BB'$ and $CC'$ in $P$ and $Q$. Determine the locus of the midpoint of the segment $[ PQ]$. [i]Gheorghe Szolosy[/i]

2011 Singapore Senior Math Olympiad, 5

Tags: inequalities
Given $x_1,x_2,\dots,x_n>0,n\geq 5$, show that \[\frac{x_1x_2}{x_1^2+x_2^2+2x_3x_4}+\frac{x_2x_3}{x_2^2+x_3^2+2x_4x_5}+\cdots+\frac{x_nx_1}{x_n^2+x_1^2+2x_2x_3}\leq \frac{n-1}{2}\]

2017 Puerto Rico Team Selection Test, 6

Find all functions $f: R \to R$ such that $f (xy) \le yf (x) + f (y)$, for all $x, y\in R$.

2007 Thailand Mathematical Olympiad, 1

Find all functions $f : R \to R$ such that the inequality $$\sum_{i=1}^{2549} f(x_i + x_{i+1}) + f (\sum_{i=1}^{2550}x_y) \le \sum_{i=1}^{2550}f(2x_i)$$ for all reals $x_1, x_2, . . . , x_{2550}$.

2008 Indonesia TST, 2

Let $\{a_n\}_{n \in N}$ be a sequence of real numbers with $a_1 = 2$ and $a_n =\frac{n^2 + 1}{\sqrt{n^3 - 2n^2 + n}}$ for all positive integers $n \ge 2$. Let $s_n = a_1 + a_2 + ...+ a_n$ for all positive integers $n$. Prove that $$\frac{1}{s_1s_2}+\frac{1}{s_2s_3}+ ...+\frac{1}{s_ns_{n+1}}<\frac15$$ for all positive integers $n$.

2016 Israel Team Selection Test, 1

Let $a,b,c$ be positive numbers satisfying $ab+bc+ca+2abc=1$. Prove that $4a+b+c \geq 2$.

1996 IMO Shortlist, 5

Let $ P(x)$ be the real polynomial function, $ P(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d.$ Prove that if $ |P(x)| \leq 1$ for all $ x$ such that $ |x| \leq 1,$ then \[ |a| \plus{} |b| \plus{} |c| \plus{} |d| \leq 7.\]

1993 Moldova Team Selection Test, 7

Tags: inequalities
If $x_1 + x_2 + \cdots + x_n = \sum_{i=1}^{n} x_i = \frac{1}{2}$ and $x_i > 0$ ; then prove that: $ \frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdots \frac{1-x_n}{1+x_n} = \prod_{i=1}^{n} \frac{1-x_i}{1+x_i} \geq \frac{1}{3}$

2015 Bosnia Herzegovina Team Selection Test, 1

Determine the minimum value of the expression $$\frac {a+1}{a(a+2)}+ \frac {b+1}{b(b+2)}+\frac {c+1}{c(c+2)}$$ for positive real numbers $a,b,c$ such that $a+b+c \leq 3$.

1999 Irish Math Olympiad, 1

Tags: inequalities
Find all real numbers $ x$ which satisfy: $ \frac{x^2}{(x\plus{}1\minus{}\sqrt{x\plus{}1})^2}<\frac{x^2\plus{}3x\plus{}18}{(x\plus{}1)^2}.$

2020 Thailand Mathematical Olympiad, 7

Determine all functions $f:\mathbb{R}\to\mathbb{Z}$ satisfying the inequality $(f(x))^2+(f(y))^2 \leq 2f(xy)$ for all reals $x,y$.

2009 Today's Calculation Of Integral, 439

Find the volume of the solid defined by the inequality $ x^2 \plus{} y^2 \plus{} \ln (1 \plus{} z^2)\leq \ln 2$. Note that you may not directively use double integral here for Japanese high school students who don't study it.

2017 Korea Junior Math Olympiad, 4

Tags: inequalities
4. Let $a \geq b \geq c \geq d>0$. Show that \[ \frac{b^3}{a} + \frac{c^3}{b} + \frac{d^3}{c} + \frac{a^3}{d} + 3 \left( ab+bc+cd+da \right) \geq 4 {\left( a^2 + b^2 + c^2 +d^2 \right)}. \] Other problems (in Korean) are also available at https://www.facebook.com/KoreanMathOlympiad

2011 NIMO Summer Contest, 4

Tags: inequalities
Find the number of ordered pairs of integers $(a, b)$ that satisfy the inequality \[ 1 < a < b+2 < 10. \] [i]Proposed by Lewis Chen [/i]

2018 Czech-Polish-Slovak Junior Match, 3

Calculate all real numbers $r $ with the following properties: If real numbers $a, b, c$ satisfy the inequality$ | ax^2 + bx + c | \le 1$ for each $x \in [ - 1, 1]$, then they also satisfy the inequality $| cx^2 + bx + a | \le r$ for each $ x \in [- 1, 1]$.

2019 Jozsef Wildt International Math Competition, W. 61

If $a$, $b$, $c \in \mathbb{R}$ then$$\sum \limits_{cyc} \sqrt{(c+a)^2b^2+c^2a^2}+\sqrt{5}\left |\sum \limits_{cyc} \sqrt{ab}\right |\geq \sum \limits_{cyc}\sqrt{(ab+2bc+ca)^2+(b+c)^2a^2}$$

2007 Today's Calculation Of Integral, 220

Prove that $ \frac{\pi}{2}\minus{}1<\int_{0}^{1}e^{\minus{}2x^{2}}\ dx$.

2019 Korea National Olympiad, 1

Tags: inequalities
The sequence ${a_1, a_2, ..., a_{2019}}$ satisfies the following condition. $a_1=1, a_{n+1}=2019a_{n}+1$ Now let $x_1, x_2, ..., x_{2019}$ real numbers such that $x_1=a_{2019}, x_{2019}=a_1$ (The others are arbitary.) Prove that $\sum_{k=1}^{2018} (x_{k+1}-2019x_k-1)^2 \ge \sum_{k=1}^{2018} (a_{2019-k}-2019a_{2020-k}-1)^2$

2022 VIASM Summer Challenge, Problem 2

Let $S$ be the set of real numbers $k$ with the following property: for all set of real numbers $(a,b,c)$ satisfying $ab+bc+ca=1$, we always have the inequality:$$\frac{a}{{\sqrt {{a^2} + ab + {b^2} + k} }} + \frac{b}{{\sqrt {{b^2} + bc + {c^2} + k} }} + \frac{c}{{\sqrt {{c^2} + ca + {a^2} + k} }} \ge \sqrt {\frac{3}{{k + 1}}} .$$ a) Assume that $k\in S$. Prove that: $k\ge 2$. b) Prove that: $2\in S$.

2020 China Second Round Olympiad, 2

Let $n\geq3$ be a given integer, and let $a_1,a_2,\cdots,a_{2n},b_1,b_2,\cdots,b_{2n}$ be $4n$ nonnegative reals, such that $$a_1+a_2+\cdots+a_{2n}=b_1+b_2+\cdots+b_{2n}>0,$$ and for any $i=1,2,\cdots,2n,$ $a_ia_{i+2}\geq b_i+b_{i+1},$ where $a_{2n+1}=a_1,$ $a_{2n+2}=a_2,$ $b_{2n+1}=b_1.$ Detemine the minimum of $a_1+a_2+\cdots+a_{2n}.$

2015 Thailand TSTST, 2

Tags: inequalities
Let $a, b, c \geq 1$. Prove that $$\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geq\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}.$$

2006 China National Olympiad, 5

Let $\{a_n\}$ be a sequence such that: $a_1 = \frac{1}{2}$, $a_{k+1}=-a_k+\frac{1}{2-a_k}$ for all $k = 1, 2,\ldots$. Prove that \[ \left(\frac{n}{2(a_1+a_2+\cdots+a_n)}-1\right)^n \leq \left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^n\left(\frac{1}{a_1}-1\right)\left(\frac{1}{a_2}-1\right)\cdots \left(\frac{1}{a_n}-1\right). \]