Found problems: 6530
2015 Turkey MO (2nd round), 2
$x$, $y$ and $z$ are real numbers where the sum of any two among them is not $1$. Show that, \[ \dfrac{(x^2+y)(x+y^2)}{(x+y-1)^2}+\dfrac{(y^2+z)(y+z^2)}{(y+z-1)^2} + \dfrac{(z^2+x)(z+x^2)}{(z+x-1)^2} \ge 2(x+y+z) - \dfrac{3}{4}\]Find all triples $(x,y,z)$ of real numbers satisfying the equality case.
2025 Kosovo National Mathematical Olympiad`, P4
Show that for any real numbers $a$ and $b$ different from $0$, the inequality
$$\bigg \lvert \frac{a}{b} + \frac{b}{a}+ab \bigg \lvert \geq \lvert a+b+1 \rvert$$
holds. When is equality achieved?
2004 Bulgaria Team Selection Test, 2
Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$
2010 Hanoi Open Mathematics Competitions, 10
Find the maximum value of $M =\frac{x}{2x + y} +\frac{y}{2y + z}+\frac{z}{2z + x}$ , $x,y, z > 0$
2023 Brazil Team Selection Test, 3
Show that for all positive real numbers $a, b, c$, we have that $$\frac{a+b+c}{3}-\sqrt[3]{abc} \leq \max\{(\sqrt{a}-\sqrt{b})^2, (\sqrt{b}-\sqrt{c})^2, (\sqrt{c}-\sqrt{a})^2\}$$
2015 FYROM JBMO Team Selection Test, 3
Let $a, b$ and $c$ be positive real numbers. Prove that $\prod_{cyc}(16a^2+8b+17)\geq2^{12}\prod_{cyc}(a+1)$.
1971 Poland - Second Round, 5
Given the set of numbers $ \{1, 2, 3, \ldots, 100\} $. From this set, create 10 pairwise disjoint subsets $ N_i = \{a_{i,1}, a_{i,2}, ... a_{i,10} $ ($ i = 1, 2, \ldots, 10 $ ) so that the sum of the products
$$
\sum_{i=10}^{10}\prod_{j=1}^{10} a_{i,j}
$$
was the biggest.
1989 Spain Mathematical Olympiad, 3
Prove $ \frac{1}{10\sqrt2}<\frac{1}{2}\frac{3}{4}\frac{5}{6}...\frac{99}{100}<\frac{1}{10} $
2008 Balkan MO Shortlist, A1
For all $\alpha_1, \alpha_2,\alpha_3 \in \mathbb{R}^+$, Prove
\begin{align*} \sum \frac{1}{2\nu \alpha_1 +\alpha_2+\alpha_3} > \frac{2\nu}{2\nu +1} \left( \sum \frac{1}{\nu \alpha_1 + \nu \alpha_2 + \alpha_3} \right) \end{align*}
for every positive real number $\nu$
IMSC 2023, 2
There are $n!$ empty baskets in a row, labelled $1, 2, . . . , n!$. Caesar
first puts a stone in every basket. Caesar then puts 2 stones in every second basket.
Caesar continues similarly until he has put $n$ stones into every nth basket. In
other words, for each $i = 1, 2, . . . , n,$ Caesar puts $i$ stones into the baskets labelled
$i, 2i, 3i, . . . , n!.$
Let $x_i$ be the number of stones in basket $i$ after all these steps. Show that
$n! \cdot n^2 \leq \sum_{i=1}^{n!} x_i^2 \leq n! \cdot n^2 \cdot \sum_{i=1}^{n} \frac{1}{i} $
2007 Italy TST, 1
We have a complete graph with $n$ vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?
2000 APMO, 4
Let $n,k$ be given positive integers with $n>k$. Prove that:
\[ \frac{1}{n+1} \cdot \frac{n^n}{k^k (n-k)^{n-k}} < \frac{n!}{k! (n-k)!} < \frac{n^n}{k^k(n-k)^{n-k}} \]
2013 Romania Team Selection Test, 1
Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.
1973 AMC 12/AHSME, 11
A circle with a circumscribed and an inscribed square centered at the origin $ O$ of a rectangular coordinate system with positive $ x$ and $ y$ axes $ OX$ and $ OY$ is shown in each figure $ I$ to $ IV$ below.
[asy]
size((400));
draw((0,0)--(22,0), EndArrow);
draw((10,-10)--(10,12), EndArrow);
draw((25,0)--(47,0), EndArrow);
draw((35,-10)--(35,12), EndArrow);
draw((-25,0)--(-3,0), EndArrow);
draw((-15,-10)--(-15,12), EndArrow);
draw((-50,0)--(-28,0), EndArrow);
draw((-40,-10)--(-40,12), EndArrow);
draw(Circle((-40,0),6));
draw(Circle((-15,0),6));
draw(Circle((10,0),6));
draw(Circle((35,0),6));
draw((-34,0)--(-40,6)--(-46,0)--(-40,-6)--(-34,0)--(-34,6)--(-46,6)--(-46,-6)--(-34,-6)--cycle);
draw((-6.5,0)--(-15,8.5)--(-23.5,0)--(-15,-8.5)--cycle);
draw((-10.8,4.2)--(-19.2,4.2)--(-19.2,-4.2)--(-10.8,-4.2)--cycle);
draw((14.2,4.2)--(5.8,4.2)--(5.8,-4.2)--(14.2,-4.2)--cycle);
draw((16,6)--(4,6)--(4,-6)--(16,-6)--cycle);
draw((41,0)--(35,6)--(29,0)--(35,-6)--cycle);
draw((43.5,0)--(35,8.5)--(26.5,0)--(35,-8.5)--cycle);
label("I", (-49,9));
label("II", (-24,9));
label("III", (1,9));
label("IV", (26,9));
label("X", (-28,0), S);
label("X", (-3,0), S);
label("X", (22,0), S);
label("X", (47,0), S);
label("Y", (-40,12), E);
label("Y", (-15,12), E);
label("Y", (10,12), E);
label("Y", (35,12), E);[/asy]
The inequalities
\[ |x| \plus{} |y| \leq \sqrt {2(x^2 \plus{} y^2)} \leq 2\mbox{Max}(|x|, |y|)\]
are represented geometrically* by the figure numbered
$ \textbf{(A)}\ I \qquad \textbf{(B)}\ II \qquad \textbf{(C)}\ III \qquad \textbf{(D)}\ IV \qquad \textbf{(E)}\ \mbox{none of these}$
*An inequality of the form $ f(x, y) \leq g(x, y)$, for all $ x$ and $ y$ is represented geometrically by a figure showing the containment
\[ \{\mbox{The set of points }(x, y)\mbox{ such that }g(x, y) \leq a\} \subset\\ \{\mbox{The set of points }(x, y)\mbox{ such that }f(x, y) \leq a\}\]
for a typical real number $ a$.
2009 Junior Balkan Team Selection Tests - Romania, 1
Show that in any triangle $ABC$ with $A = 90^0$ the following inequality holds:
$$(AB -AC)^2(BC^2 + 4AB \cdot AC)^2 \le 2BC^6$$
2005 Iran Team Selection Test, 1
Suppose that $ a_1$, $ a_2$, ..., $ a_n$ are positive real numbers such that $ a_1 \leq a_2 \leq \dots \leq a_n$. Let
\[ {{a_1 \plus{} a_2 \plus{} \dots \plus{} a_n} \over n} \equal{} m; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{a_1^2 \plus{} a_2^2 \plus{} \dots \plus{} a_n^2} \over n} \equal{} 1.
\]
Suppose that, for some $ i$, we know $ a_i \leq m$. Prove that:
\[ n \minus{} i \geq n \left(m \minus{} a_i\right)^2
\]
2007 Serbia National Math Olympiad, 3
Let $k$ be a given natural number. Prove that for any positive numbers $x; y; z$ with
the sum $1$ the following inequality holds:
\[\frac{x^{k+2}}{x^{k+1}+y^{k}+z^{k}}+\frac{y^{k+2}}{y^{k+1}+z^{k}+x^{k}}+\frac{z^{k+2}}{z^{k+1}+x^{k}+y^{k}}\geq \frac{1}{7}.\]
When does equality occur?
2005 Taiwan TST Round 3, 1
Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[
n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality.
[i]Proposed by Finbarr Holland, Ireland[/i]
1979 AMC 12/AHSME, 13
The inequality $y-x<\sqrt{x^2}$ is satisfied if and only if
$\textbf{(A) }y<0\text{ or }y<2x\text{ (or both inequalities hold)}\qquad$
$\textbf{(B) }y>0\text{ or }y<2x\text{ (or both inequalities hold)}\qquad$
$\textbf{(C) }y^2<2xy\qquad\textbf{(D) }y<0\qquad\textbf{(E) }x>0\text{ and }y<2x$
2015 Costa Rica - Final Round, A2
Determine, if they exist, the real values of $x$ and $y$ that satisfy that $$\frac{x^2}{y^2} +\frac{y^2}{x^2} +\frac{x}{y}+\frac{y}{x} = 0$$ such that $x + y <0.$
2019 BMT Spring, 5
Find the area of the set of all points $ z $ in the complex plane that satisfy $ \left| z - 3i \right| + \left| z - 4 \right| \leq 5\sqrt{2} $.
2004 Serbia Team Selection Test, 2
Let $a$, $b$ and $c$ be real numbers such that $abc=1$. Prove that the most two of numbers
$$2a-\frac{1}{b},\ 2b-\frac{1}{c},\ 2c-\frac{1}{a}$$
are greater than $1$.
2004 All-Russian Olympiad, 4
Let $n > 3$ be a natural number, and let $x_1$, $x_2$, ..., $x_n$ be $n$ positive real numbers whose product is $1$. Prove the inequality \[ \frac {1}{1 + x_1 + x_1\cdot x_2} + \frac {1}{1 + x_2 + x_2\cdot x_3} + ... + \frac {1}{1 + x_n + x_n\cdot x_1} > 1. \]
2022-23 IOQM India, 15
Let $x,y$ be real numbers such that $xy=1$. Let $T$ and $t$ be the largest and smallest values of the expression \\
$\hspace{2cm} \frac{(x+y)^2-(x-y)-2}{(x+y)^2+(x-y)-2}$\\.
\\
If $T+t$ can be expressed in the form $\frac{m}{n}$ where $m,n$ are nonzero integers with $GCD(m,n)=1$, find the value of $m+n$.
2000 VJIMC, Problem 4
Let $\mathcal B$ be a family of open balls in $\mathbb R^n$ and $c<\lambda\left(\bigcup\mathcal B\right)$ where $\lambda$ is the $n$-dimensional Lebesgue measure. Show that there exists a finite family of pairwise disjoint balls $\{U_i\}^k_{i=1}\subseteq\mathcal B$ such that
$$\sum_{j=1}^k\lambda(U_j)>\frac c{3^n}.$$