This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

1969 IMO Longlists, 64

$(USS 1)$ Prove that for a natural number $n > 2, (n!)! > n[(n - 1)!]^{n!}.$

2021 China Team Selection Test, 4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

2001 China Team Selection Test, 2

Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds: $\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$

1994 IMO, 1

Let $ m$ and $ n$ be two positive integers. Let $ a_1$, $ a_2$, $ \ldots$, $ a_m$ be $ m$ different numbers from the set $ \{1, 2,\ldots, n\}$ such that for any two indices $ i$ and $ j$ with $ 1\leq i \leq j \leq m$ and $ a_i \plus{} a_j \leq n$, there exists an index $ k$ such that $ a_i \plus{} a_j \equal{} a_k$. Show that \[ \frac {a_1 \plus{} a_2 \plus{} ... \plus{} a_m}{m} \geq \frac {n \plus{} 1}{2}. \]

2013 Sharygin Geometry Olympiad, 3

Each sidelength of a convex quadrilateral $ABCD$ is not less than $1$ and not greater than $2$. The diagonals of this quadrilateral meet at point $O$. Prove that $S_{AOB}+ S_{COD} \le 2(S_{AOD}+ S_{BOC})$.

1981 USAMO, 5

If $x$ is a positive real number, and $n$ is a positive integer, prove that \[[ nx] > \frac{[ x]}1 + \frac{[ 2x]}2 +\frac{[ 3x]}3 + \cdots + \frac{[ nx]}n,\] where $[t]$ denotes the greatest integer less than or equal to $t$. For example, $[ \pi] = 3$ and $\left[\sqrt2\right] = 1$.

2019 Balkan MO, 2

Tags: inequality
Let $a,b,c$ be real numbers such that $0 \leq a \leq b \leq c$ and $a+b+c=ab+bc+ca >0.$ Prove that $\sqrt{bc}(a+1) \geq 2$ and determine the equality cases. (Edit: Proposed by sir Leonard Giugiuc, Romania)

2024 Brazil EGMO TST, 1

Decide whether there exists a positive real number \( a < 1 \) such that, for any positive real numbers \( x \) and \( y \), the inequality \[ \frac{2xy^2}{x^2 + y^2} \leq (1 - a)x + ay \] holds true.

2021 Austrian MO National Competition, 1

Let $a,b,c\geq 0$ and $a+b+c=1.$ Prove that$$\frac{a}{2a+1}+\frac{b}{3b+1}+\frac{c}{6c+1}\leq \frac{1}{2}.$$ [size=50](Marian Dinca)[/size]

2012 Bosnia and Herzegovina Junior BMO TST, 4

If $a$, $b$ and $c$ are sides of triangle which perimeter equals $1$, prove that: $a^2+b^2+c^2+4abc<\frac{1}{2}$

JOM 2015 Shortlist, A1

Let $ a, b, c $ be the side lengths of a triangle. Prove that $$ \displaystyle\sum_{cyc} \frac{(a^2 + b^2)(a + c)}{b} \ge 2(a^2 + b^2 + c^2) $$

2014 IFYM, Sozopol, 1

Prove that for $\forall$ $a,b,c\in [\frac{1}{3},3]$ the following inequality is true: $\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\geq \frac{7}{5}$.

1953 Putnam, A1

Prove that for every positive integer $n$ $$ \frac{2}{3} n \sqrt{n} < \sqrt{1} + \sqrt{2} +\ldots +\sqrt{n} < \frac{4n+3}{6} \sqrt{n}.$$

2016 Germany National Olympiad (4th Round), 6

Let \[ f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_2x_4+x_2x_3x_5+x_3x_4x_6+x_4x_5x_7+x_5x_6x_1+x_6x_7x_2+x_7x_1x_3 \] be defined for non-negative real numbers $x_1,x_2,\dots,x_7$ with sum $1$. Prove that $f(x_1,x_2,\dots,x_7)$ has a maximum value and find that value.

2015 China Girls Math Olympiad, 7

Let $x_1,x_2,\cdots,x_n \in(0,1)$ , $n\geq2$. Prove that$$\frac{\sqrt{1-x_1}}{x_1}+\frac{\sqrt{1-x_2}}{x_2}+\cdots+\frac{\sqrt{1-x_n}}{x_n}<\frac{\sqrt{n-1}}{x_1 x_2 \cdots x_n}.$$

2017 Azerbaijan JBMO TST, 1

a,b,c>0 and $abc\ge 1$.Prove that: $\dfrac{1}{a^3+2b^3+6}+\dfrac{1}{b^3+2c^3+6}+\dfrac{1}{c^3+2a^3+6} \le \dfrac{1}{3}$

2023 Thailand Online MO, 7

Let $a_0,a_1,\dots$ be a sequence of positive reals such that $$ a_{n+2} \leq \frac{2023a_n}{a_na_{n+1}+2023}$$ for all integers $n\geq 0$. Prove that either $a_{2023}<1$ or $a_{2024}<1$.

2013 Uzbekistan National Olympiad, 2

Let $x$ and $y$ are real numbers such that $x^2y^2+2yx^2+1=0.$ If $S=\frac{2}{x^2}+1+\frac{1}{x}+y(y+2+\frac{1}{x})$, find (a)max$S$ and (b) min$S$.

1980 Bulgaria National Olympiad, Problem 4

Let $a $, $b $, and $c $ be non-negative reals. Prove that $a^3+b^3+c^3+6abc\ge \frac{(a+b+c)^3}{4} $.

2020 Taiwan TST Round 1, 1

Let $a$, $b$, $c$, $d$ be real numbers satisfying \begin{align*} (a + c)(b + d) = \sqrt{2}(ac - 2bd - 1). \end{align*} Show that \begin{align*} (ab - 1)^2 + (bc - 1)^2 + (cd - 1)^2 + (da - 1)^2 + (ac - 1)^2 + (2bd + 1)^2 \ge 4. \end{align*}

2015 IFYM, Sozopol, 4

For all real numbers $a,b,c>0$ such that $abc=1$, prove that $\frac{a}{1+b^3}+\frac{b}{1+c^3}+\frac{c}{1+a^3}\geq \frac{3}{2}$.

2021-IMOC, A10

For any positive reals $x$, $y$, $z$ with $xyz + xy + yz + zx = 4$, prove that $$\sqrt{\frac{xy+x+y}{z}}+\sqrt{\frac{yz+y+z}{x}}+\sqrt{\frac{zx+z+x}{y}}\geq 3\sqrt{\frac{3(x+2)(y+2)(z+2)}{(2x + 1)(2y + 1)(2z + 1). }}$$

2016 EGMO, 1

Let $n$ be an odd positive integer, and let $x_1,x_2,\cdots ,x_n$ be non-negative real numbers. Show that \[ \min_{i=1,\ldots,n} (x_i^2+x_{i+1}^2) \leq \max_{j=1,\ldots,n} (2x_jx_{j+1}) \]where $x_{n+1}=x_1$.

2018 Azerbaijan Junior NMO, 3

$a;b\in\mathbb{R^+}$. Prove the following inequality: $$\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\leq\sqrt[3]{2(a+b)(\frac1{a}+\frac1{b})}$$

2014 Contests, 1

Prove that for $\forall$ $a,b,c\in [\frac{1}{3},3]$ the following inequality is true: $\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\geq \frac{7}{5}$.