This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

Russian TST 2022, P3

Let $n\geqslant 3$ be an integer and $x_1>x_2>\cdots>x_n$ be real numbers. Suppose that $x_k>0\geqslant x_{k+1}$ for an index $k{}$. Prove that \[\sum_{i=1}^k\left(x_i^{n-2}\prod_{j\neq i}\frac{1}{x_i-x_j}\right)\geqslant 0.\]

2019 Balkan MO Shortlist, A5

Let $a,b,c$ be positive real numbers, such that $(ab)^2 + (bc)^2 + (ca)^2 = 3$. Prove that \[ (a^2 - a + 1)(b^2 - b + 1)(c^2 - c + 1) \ge 1. \] [i]Proposed by Florin Stanescu (wer), România[/i]

2021 Science ON grade X, 1

Consider the complex numbers $x,y,z$ such that $|x|=|y|=|z|=1$. Define the number $$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$ $\textbf{(a)}$ Prove that $a$ is a real number. $\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$. [i] (Stefan Bălăucă & Vlad Robu)[/i]

1999 All-Russian Olympiad, 7

Positive numbers $x,y$ satisfy $x^2+y^3 \ge x^3+y^4$. Prove that $x^3+y^3 \le 2$.

2023 Brazil Cono Sur TST, 4

Let $n$ be a positive integer. Prove that $n\sqrt{19}\{n\sqrt{19}\} > 1$, where $\{x\}$ denotes the fractional part of $x$.

2007 Korea Junior Math Olympiad, 5

For all positive real numbers $a, b,c.$ Prove the folllowing inequality$$\frac{a}{c+5b}+\frac{b}{a+5c}+\frac{c}{b+5a}\geq\frac{1}{2}.$$

2021 Science ON Juniors, 2

$a,b,c$ are nonnegative integers that satisfy $a^2+b^2+c^2=3$. Find the minimum and maximum value the sum $$\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}$$ may achieve and find all $a,b,c$ for which equality occurs.\\ \\ [i](Andrei Bâra)[/i]

2011 Bosnia And Herzegovina - Regional Olympiad, 2

If for real numbers $x$ and $y$ holds $\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1$ prove that $$\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1$$

2022 Macedonian Mathematical Olympiad, Problem 1

Let $(x_n)_{n=1}^\infty$ be a sequence defined recursively with: $x_1=2$ and $x_{n+1}=\frac{x_n(x_n+n)}{n+1}$ for all $n \ge 1$. Prove that $$n(n+1) >\frac{(x_1+x_2+ \ldots +x_n)^2}{x_{n+1}}.$$ [i]Proposed by Nikola Velov[/i]

2014 IFYM, Sozopol, 4

Prove that for $\forall$ $x,y,z\in \mathbb{R}^+$ the following inequality is true: $\frac{x}{y+z}+\frac{25y}{z+x}+\frac{4z}{x+y}>2$.

2022 Indonesia TST, A

Let $a$ and $b$ be two positive reals such that the following inequality \[ ax^3 + by^2 \geq xy - 1 \] is satisfied for any positive reals $x, y \geq 1$. Determine the smallest possible value of $a^2 + b$. [i]Proposed by Fajar Yuliawan[/i]

1985 IMO Longlists, 16

Let $x_1, x_2, \cdots , x_n$ be positive numbers. Prove that \[\frac{x_1^2}{x_1^2+x_2x_3} + \frac{x_2^2}{x_2^2+x_3x_4} + \cdots +\frac{x_{n-1}^2}{x_{n-1}^2+x_nx_1} +\frac{x_n^2}{x_n^2+x_1x_2} \leq n-1\]

2020 Centroamerican and Caribbean Math Olympiad, 5

Let $P(x)$ be a polynomial with real non-negative coefficients. Let $k$ be a positive integer and $x_1, x_2, \dots, x_k$ positive real numbers such that $x_1x_2\cdots x_k=1$. Prove that $$P(x_1)+P(x_2)+\cdots+P(x_k)\geq kP(1).$$

Russian TST 2021, P1

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2017 Bulgaria EGMO TST, 3

Let $a$, $b$, $c$ and $d$ be positive real numbers with $a+b+c+d = 4$. Prove that $\frac{a}{b^2 + 1} + \frac{b}{c^2+1} + \frac{c}{d^2+1} + \frac{d}{a^2+1} \geq 2$.

2011 IFYM, Sozopol, 3

Let $a=x_1\leq x_2\leq ...\leq x_n=b$. Prove the following inequality: $(x_1+x_2+...+x_n )(\frac{1}{x_1} +\frac{1}{x_2} +...+\frac{1}{x_n} )\leq \frac{(a+b)}{4ab} n^2$.

2019 India Regional Mathematical Olympiad, 3

Find all triples of non-negative real numbers $(a,b,c)$ which satisfy the following set of equations $$a^2+ab=c$$ $$b^2+bc=a$$ $$c^2+ca=b$$

1976 IMO Longlists, 3

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

2014 Dutch Mathematical Olympiad, 4

A quadruple $(p, a, b, c)$ of positive integers is called a Leiden quadruple if - $p$ is an odd prime number, - $a, b$, and $c$ are distinct and - $ab + 1, bc + 1$ and $ca + 1$ are divisible by $p$. a) Prove that for every Leiden quadruple $(p, a, b, c)$ we have $p + 2 \le \frac{a+b+c}{3}$ . b) Determine all numbers $p$ for which a Leiden quadruple $(p, a, b, c)$ exists with $p + 2 = \frac{a+b+c}{3} $

2001 Moldova National Olympiad, Problem 6

Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that $\frac14\le a_1+a_2+\ldots+a_n\le\frac12$ for all $n$.

2024 Turkey Junior National Olympiad, 4

Let $n\geq 2$ be an integer and $a_1,a_2,\cdots,a_n>1$ be real numbers. Prove that the inequality below holds. $$\prod_{i=1}^n\left(a_ia_{i+1}-\frac{1}{a_ia_{i+1}}\right)\geq 2^n\prod_{i=1}^n\left(a_i-\frac{1}{a_i}\right)$$

2013 Macedonian Team Selection Test, Problem 5

Let $ABC$ be a triangle with given sides $a,b,c$. Determine the minimal possible length of the diagonal of an inscribed rectangle in this triangle. [i]Note: A rectangle is inscribed in the triangle if two of its consecutive vertices lie on one side of the triangle, while the other two vertices lie on the other two sides of the triangle. [/i]

2001 Moldova National Olympiad, Problem 2

If $n\in\mathbb N$ and $a_1,a_2,\ldots,a_n$ are arbitrary numbers in the interval $[0,1]$, find the maximum possible value of the smallest among the numbers $a_1-a_1a_2,a_2-a_2a_3,\ldots,a_n-a_na_1$.

2023 Malaysia IMONST 2, 5

Find the smallest positive $m$ such that if $a,b,c$ are three side lengths of a triangle with $a^2 +b^2 > mc^2$, then $c$ must be the length of shortest side.

2015 Irish Math Olympiad, 10

Prove that, for all pairs of nonnegative integers, $j,n$, $$\sum_{K=0}^{n}k^j\binom n k \ge 2^{n-j} n^j$$