This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

1971 IMO Longlists, 52

Prove the inequality \[ \frac{a_1+ a_3}{a_1 + a_2} + \frac{a_2 + a_4}{a_2 + a_3} + \frac{a_3 + a_1}{a_3 + a_4} + \frac{a_4 + a_2}{a_4 + a_1} \geq 4, \] where $a_i > 0, i = 1, 2, 3, 4.$

1967 IMO Shortlist, 3

Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]

1994 IMO Shortlist, 2

Let $ m$ and $ n$ be two positive integers. Let $ a_1$, $ a_2$, $ \ldots$, $ a_m$ be $ m$ different numbers from the set $ \{1, 2,\ldots, n\}$ such that for any two indices $ i$ and $ j$ with $ 1\leq i \leq j \leq m$ and $ a_i \plus{} a_j \leq n$, there exists an index $ k$ such that $ a_i \plus{} a_j \equal{} a_k$. Show that \[ \frac {a_1 \plus{} a_2 \plus{} ... \plus{} a_m}{m} \geq \frac {n \plus{} 1}{2}. \]

2020 Junior Macedonian National Olympiad, 2

Let $x, y,$ and $z$ be positive real numbers such that $xy + yz + zx = 27$. Prove that $x + y + z \ge \sqrt{3xyz}$. When does equality hold?

1967 IMO Longlists, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

1988 IMO Shortlist, 24

Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that: \[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0 \] and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that: \[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2} \] for all $ k \equal{} 1,2, \ldots$.

2013 Balkan MO Shortlist, A1

Positive real numbers $a, b,c$ satisfy $ab + bc+ ca = 3$. Prove the inequality $$\frac{1}{4+(a+b)^2}+\frac{1}{4+(b+c)^2}+\frac{1}{4+(c+a)^2}\le \frac{3}{8}$$

2004 Croatia National Olympiad, Problem 1

Let $z_1,\ldots,z_n$ and $w_1,\ldots,w_n$ $(n\in\mathbb N)$ be complex numbers such that $$|\epsilon_1z_1+\ldots+\epsilon_nz_n|\le|\epsilon_1w_1+\ldots+\epsilon_nw_n|$$holds for every choice of $\epsilon_1,\ldots,\epsilon_n\in\{-1,1\}$. Prove that $$|z_1|^2+\ldots+|z_n|^2\le|w_1|^2+\ldots+|w_n|^2.$$

2019 JBMO Shortlist, A1

Real numbers $a$ and $b$ satisfy $a^3+b^3-6ab=-11$. Prove that $-\frac{7}{3}<a+b<-2$. [i]Proposed by Serbia[/i]

2006 Petru Moroșan-Trident, 2

Let be an increasing, infinite sequence of natural numbers $ \left( a_n \right)_{n\ge 1} . $ [b]a)[/b] Prove that if $ a_n=n, $ for any natural numbers $ n, $ then $$ -2+2\sqrt{1+n} <\frac{1}{\sqrt{a_1}} +\frac{1}{\sqrt{a_2}} +\cdots +\frac{1}{\sqrt{a_n}} <2\sqrt n , $$ for any natural numbers $ n. $ [b]b)[/b] Disprove the converse of [b]a).[/b] [i]Vasile Radu[/i]

2020 Junior Balkan Team Selection Tests-Serbia, 3#

Tags: inequality
Given are real numbers $a_1, a_2,...,a_{101}$ from the interval $[-2,10]$ such that their sum is $0$. Prove that the sum of their squares is smaller than $2020$.

2012 Polish MO Finals, 6

Show that for any positive real numbers $a, b, c$ true is inequality: $\left(\frac{a - b}{c}\right)^2 + \left(\frac{b - c}{a}\right)^2 + \left(\frac{c - a}{b}\right)^2 \ge 2\sqrt{2}\left(\frac{a - b}{c} + \frac{b - c}{a} + \frac{c - a}{b} \right)$.

2007 JBMO Shortlist, 2

$\boxed{\text{A2}}$ Prove that for all Positive reals $a,b,c$ $\frac{a^2-bc}{2a^2+bc}+\frac{b^2-ca}{2b^2+ca}+\frac{c^2-ab}{2c^2+ab}\leq 0$

2004 Mexico National Olympiad, 2

Find the maximum number of positive integers such that any two of them $a, b$ (with $a \ne b$) satisfy that$ |a - b| \ge \frac{ab}{100} .$

2014 JBMO Shortlist, 7

$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]

2009 Philippine MO, 4

Let $k$ be a positive real number such that $$\frac{1}{k+a} + \frac{1}{k+b} + \frac{1}{k+c} \leq 1$$ for any positive positive real numbers $a$, $b$ and $c$ with $abc = 1$. Find the minimum value of $k$.

2022 Azerbaijan JBMO TST, A2

For positive real numbers $a,b,c$, $\frac{1}{a}+\frac{1}{b} + \frac{1}{c} \ge \frac{3}{abc}$ is true. Prove that: $$ \frac{a^2+b^2}{a^2+b^2+1}+\frac{b^2+c^2}{b^2+c^2+1}+\frac{c^2+a^2}{c^2+a^2+1} \ge 2$$

1967 IMO Longlists, 37

Prove that for arbitrary positive numbers the following inequality holds \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.\]

2023 Mongolian Mathematical Olympiad, 1

Let $u, v$ be arbitrary positive real numbers. Prove that \[\min{(u, \frac{100}{v}, v+\frac{2023}{u})} \leq \sqrt{2123}.\]

2022 Grosman Mathematical Olympiad, P4

Along a circle-shaped path are $100$ boys and $100$ girls. The distance between two points on the path is defined as the length of the smaller arc through which it is possible to get from one point to the other. Prove that the sum of distances between pairs of the same gender is always less than or equal to the sum of distances between all pairs of a boy and a girl.

Ukrainian TYM Qualifying - geometry, VII.12

Let $a, b$, and $c$ be the lengths of the sides of an arbitrary triangle, and let $\alpha,\beta$, and $\gamma$ be the radian measures of its corresponding angles. Prove that $$ \frac{\pi}{3}\le \frac{\alpha a +\beta b + \gamma c}{a+b+c} < \frac{\pi}{2}.$$ Suggest spatial analogues of this inequality.

1979 IMO Longlists, 29

Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.

2019 Balkan MO, 2

Tags: inequality
Let $a,b,c$ be real numbers such that $0 \leq a \leq b \leq c$ and $a+b+c=ab+bc+ca >0.$ Prove that $\sqrt{bc}(a+1) \geq 2$ and determine the equality cases. (Edit: Proposed by sir Leonard Giugiuc, Romania)

2024 Turkey Junior National Olympiad, 4

Let $n\geq 2$ be an integer and $a_1,a_2,\cdots,a_n>1$ be real numbers. Prove that the inequality below holds. $$\prod_{i=1}^n\left(a_ia_{i+1}-\frac{1}{a_ia_{i+1}}\right)\geq 2^n\prod_{i=1}^n\left(a_i-\frac{1}{a_i}\right)$$

2005 China Second Round Olympiad, 2

Assume that positive numbers $a, b, c, x, y, z$ satisfy $cy + bz = a$, $az + cx = b$, and $bx + ay = c$. Find the minimum value of the function \[ f(x, y, z) = \frac{x^2}{x+1} + \frac {y^2}{y+1} + \frac{z^2}{z+1}. \]