This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2023 CIIM, 1

Determine all the pairs of positive real numbers $(a, b)$ with $a < b$ such that the following series $$\sum_{k=1}^{\infty} \int_a^b\{x\}^k dx =\int_a^b\{x\} dx + \int_a^b\{x\}^2 dx + \int_a^b\{x\}^3 dx + \cdots$$ is convergent and determine its value in function of $a$ and $b$. [b]Note: [/b] $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.

1960 Putnam, B2

Evaluate the double series $$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} 2^{-3k -j -(k+j)^{2}}.$$

2010 Contests, 2

Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$

2010 IMC, 2

Compute the sum of the series $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} = \frac{1}{1\cdot2\cdot3\cdot4} + \frac{1}{5\cdot6\cdot7\cdot8} + ...$