This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 50

1973 Putnam, B4

(a) On $[0, 1]$, let $f(x)$ have a continuous derivative satisfying $0 <f'(x) \leq1$. Also suppose that $f(0) = 0.$ Prove that $$ \left( \int_{0}^{1} f(x)\; dx \right)^{2} \geq \int_{0}^{1} f(x)^{3}\; dx.$$ (b) Show an example in which equality occurs.

2008 Alexandru Myller, 3

Find the nondecreasing functions $ f:[0,1]\rightarrow\mathbb{R} $ that satisfy $$ \left| \int_0^1 f(x)e^{nx} dx\right|\le 2008 , $$ for any nonnegative integer $ n. $ [i]Mihai Piticari[/i]

2024 District Olympiad, P4

Let $f:[0,\infty)\to\mathbb{R}$ be a differentiable function, with a continous derivative. Given that $f(0)=0$ and $0\leqslant f'(x)\leqslant 1$ for every $x>0$ prove that\[\frac{1}{n+1}\int_0^af(t)^{2n+1}\mathrm{d}t\leqslant\left(\int_0^af(t)^n\mathrm{d}t\right)^2,\]for any positive integer $n{}$ and real number $a>0.$

2009 District Olympiad, 1

Let $ f:[0,\infty )\longrightarrow [0,\infty ) $ a nonincreasing function that satisfies the inequality: $$ \int_0^x f(t)dt <1,\quad\forall x\ge 0. $$ Prove the following affirmations: [b]a)[/b] $ \exists \lim_{x\to\infty} \int_0^x f(t)dt \in\mathbb{R} . $ [b]b)[/b] $ \lim_{x\to\infty} xf(x) =0. $

2016 VJIMC, 4

Let $f: [0,\infty) \to \mathbb{R}$ be a continuously differentiable function satisfying $$f(x) = \int_{x - 1}^xf(t)\mathrm{d}t$$ for all $x \geq 1$. Show that $f$ has bounded variation on $[1,\infty)$, i.e. $$\int_1^{\infty} |f'(x)|\mathrm{d}x < \infty.$$

1992 Putnam, A2

Define $C(\alpha)$ to be the coefficient of $x^{1992}$ in the power series about $x = 0$ of $(1 + x)^{\alpha}$ . Evaluate $$\int_{0}^{1} \left( C(-y-1) \sum_{k=1}^{1992} \frac{1}{y+k} \right)\, dy.$$

2022 District Olympiad, P4

Tags: integral , function
Let $I\subseteq \mathbb{R}$ be an open interval and $f:I\to\mathbb{R}$ a strictly monotonous function. Prove that for all $c\in I$ there exist $a,b\in I$ such that $c\in (a,b)$ and \[\int_a^bf(x) \ dx=f(c)\cdot (b-a).\]

1985 Traian Lălescu, 2.1

Let $ f:[-1,1]\longrightarrow\mathbb{R} $ a derivable function and a non-negative integer $ n. $ Show that there is a $ c\in [-1,1] $ so that: $$ \int_{-1}^1 x^{2n+1} f(x)dx =\frac{2}{2n+3}f'(c). $$

Gheorghe Țițeica 2024, P4

Let $f:\mathbb{R}\rightarrow (0,\infty)$ be continuous function of period $1$. Prove that for any $a\in\mathbb{R}$ $$\int_0^1\frac{f(x)}{f(x+a)}dx\geq 1.$$

2011 District Olympiad, 3

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous and nondecreasing function. [b]a)[/b] Show that the sequence $ \left( \frac{1}{2^n}\sum_{i=1}^{2^n} f\left(\frac{i}{2^n}\right) \right)_{n\ge 1} $ is nonincreasing. [b]b)[/b] Prove that, if there exists some natural index at which the sequence above is equal to $ \int_0^1 f(x)dx, $ then $ f $ is constant.

2021 Romania National Olympiad, 1

Tags: integral
Find all continuous functions $f:\left[0,1\right]\rightarrow[0,\infty)$ such that: $\int_{0}^{1}f\left(x\right)dx\cdotp\int_{0}^{1}f^{2}\left(x\right)dx\cdotp...\cdotp\int_{0}^{1}f^{2020}\left(x\right)dx=\left(\int_{0}^{1}f^{2021}\left(x\right)dx\right)^{1010}$

2024 District Olympiad, P2

Let $f:[0,1]\to(0,\infty)$ be a continous function on $[0,1]$ and let $A=\int_0^1 f(t)\mathrm{d}t.$[list=a] [*]Consider the function $F:[0,1]\to[0,A]$ defined by \[F(x)=\int_0^xf(t)\mathrm{d}t.\]Prove that $F(x)$ has an inverse function, which is differentiable. [*]Prove that there exists a unique function $g:[0,1]\to[0,1]$ for which\[\int_0^xf(t)\mathrm{d}t=\int_{g(x)}^1f(t)\mathrm{d}t\]is satisfied for every $x\in [0,1].$ [*]Prove that there exists $c\in[0,1]$ for which\[\lim_{x\to c}\frac{g(x)-c}{x-c}=-1,\]whre $g$ is the function uniquely determined at b. [/list]

2000 Romania National Olympiad, 1

Let $ a\in (1,\infty) $ and a countinuous function $ f:[0,\infty)\longrightarrow\mathbb{R} $ having the property: $$ \lim_{x\to \infty} xf(x)\in\mathbb{R} . $$ [b]a)[/b] Show that the integral $ \int_1^{\infty} \frac{f(x)}{x}dx $ and the limit $ \lim_{t\to\infty} t\int_{1}^a f\left( x^t \right) dx $ both exist, are finite and equal. [b]b)[/b] Calculate $ \lim_{t\to \infty} t\int_1^a \frac{dx}{1+x^t} . $

2023 District Olympiad, P1

Let $f:[-\pi/2,\pi/2]\to\mathbb{R}$ be a twice differentiable function which satisfies \[\left(f''(x)-f(x)\right)\cdot\tan(x)+2f'(x)\geqslant 1,\]for all $x\in(-\pi/2,\pi/2)$. Prove that \[\int_{-\pi/2}^{\pi/2}f(x)\cdot \sin(x) \ dx\geqslant \pi-2.\]

2010 Laurențiu Panaitopol, Tulcea, 1

Let be two real numbers $ a<b $ and a function $ f:[a,b]\longrightarrow\mathbb{R} $ having the property that if the sequence $ \left(f\left( x_n \right)\right)_{n\ge 1} $ is convergent, then the sequence $ \left( x_n \right)_{n\ge 1} $ is convergent. [b]a)[/b] Prove that if $ f $ admits antiderivatives, then $ f $ is integrable. [b]b)[/b] Is the converse of [b]a)[/b] true? [i]Marcelina Popa[/i]

II Soros Olympiad 1995 - 96 (Russia), 11.1

Find some antiderivative of the function $y = 1/x^3$, the graph of which has exactly three common points with the graph of the function $y = |x|$.

1967 Putnam, B3

If $f$ and $g$ are continuous and periodic functions with period $1$ on the real line, then $$\lim_{n\to \infty} \int_{0}^{1} f(x)g (nx)\; dx =\left( \int_{0}^{1} f(x)\; dx\right)\left( \int_{0}^{1} g(x)\; dx\right).$$

2017 District Olympiad, 1

Let $ f,g:[0,1]\longrightarrow{R} $ be two continuous functions such that $ f(x)g(x)\ge 4x^2, $ for all $ x\in [0,1] . $ Prove that $$ \left| \int_0^1 f(x)dx \right| \ge 1\text{ or } \left| \int_0^1 g(x)dx \right| \ge 1. $$

2000 Romania National Olympiad, 2

For any partition $ P $ of $ [0,1] $ , consider the set $$ \mathcal{A}(P)=\left\{ f:[0,1]\longrightarrow\mathbb{R}\left| \exists f’\bigg|_{[0,1]}\right.\wedge\int_0^1 |f(x)|dx =1\wedge \left( y\in P\implies f (y ) =0\right)\right\} . $$ Prove that there exists a partition $ P_0 $ of $ [0,1] $ such that $$ g\in \mathcal{A}\left( P_0\right)\implies \sup_{x\in [0,1]} \big| g’(x)\big| >4\cdot \# P. $$ Here, $ \# D $ denotes the natural number $ d $ such that $ 0=x_0<x_1<\cdots <x_d=1 $ is a partition $ D $ of $ [0,1] . $

1981 Spain Mathematical Olympiad, 4

Calculate the integral $$\int \frac{dx}{\sin (x - 1) \sin (x - 2)} .$$ Hint: Change $\tan x = t$ .

1979 Spain Mathematical Olympiad, 5

Calculate the definite integral $$\int_2^4 \sin ((x-3)^3) dx$$

2022 Romania National Olympiad, P1

Let $\mathcal{F}$ be the set of functions $f:\mathbb{R}\to\mathbb{R}$ such that $f(2x)=f(x)$ for all $x\in\mathbb{R}.$ [list=a] [*]Determine all functions $f\in\mathcal{F}$ which admit antiderivatives on $\mathbb{R}.$ [*]Give an example of a non-constant function $f\in\mathcal{F}$ which is integrable on any interval $[a,b]\subset\mathbb{R}$ and satisfies \[\int_a^bf(x) \ dx=0\]for all real numbers $a$ and $b.$ [/list][i]Mihai Piticari and Sorin Rădulescu[/i]

2007 Gheorghe Vranceanu, 4

Let $ F $ be the primitive of a continuous function $ f:\mathbb{R}\longrightarrow (0,\infty ), $ with $ F(0)=0. $ Determine for which values of $ \lambda \in (0,1) $ the function $ \left( F^{-1}\circ \lambda F \right)/\text{id.} $ has limit at $ 0, $ and calculate it.

2023 CIIM, 1

Determine all the pairs of positive real numbers $(a, b)$ with $a < b$ such that the following series $$\sum_{k=1}^{\infty} \int_a^b\{x\}^k dx =\int_a^b\{x\} dx + \int_a^b\{x\}^2 dx + \int_a^b\{x\}^3 dx + \cdots$$ is convergent and determine its value in function of $a$ and $b$. [b]Note: [/b] $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of $x$.

2008 District Olympiad, 2

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a countinuous and periodic function, of period $ T. $ If $ F $ is a primitive of $ f, $ show that: [b]a)[/b] the function $ G:\mathbb{R}\longrightarrow\mathbb{R}, G(x)=F(x)-\frac{x}{T}\int_0^T f(t)dt $ is periodic. [b]b)[/b] $ \lim_{n\to\infty}\sum_{i=1}^n\frac{F(i)}{n^2+i^2} =\frac{\ln 2}{2T}\int_0^T f(x)dx. $