This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 108

1985 Spain Mathematical Olympiad, 7

Find the values of $p$ for which the equation $x^5 - px-1 = 0$ has two roots $r$ and $s$ which are the roots of equation $x^2-ax+b= 0$ for some integers $a,b$.

2016 PAMO, 3

For any positive integer $n$, we define the integer $P(n)$ by : $P(n)=n(n+1)(2n+1)(3n+1)...(16n+1)$. Find the greatest common divisor of the integers $P(1)$, $P(2)$, $P(3),...,P(2016)$.

1992 Nordic, 2

Let $n > 1$ be an integer and let $a_1, a_2,... , a_n$ be $n$ different integers. Show that the polynomial $f(x) = (x -a_1)(x - a_2)\cdot ... \cdot (x -a_n) - 1$ is not divisible by any polynomial with integer coefficients and of degree greater than zero but less than $n$ and such that the highest power of $x$ has coefficient $1$.

2011 Dutch IMO TST, 4

Determine all integers $n$ for which the polynomial $P(x) = 3x^3-nx-n-2$ can be written as the product of two non-constant polynomials with integer coeffcients.

2016 Saudi Arabia BMO TST, 3

Find all integers $n$ such that there exists a polynomial $P(x)$ with integer coefficients satisfying $$P(\sqrt[3]{n^2} + \sqrt[3]{ n}) = 2016n + 20\sqrt[3]{n^2} + 16\sqrt[3]{n}$$

2021 Iran RMM TST, 1

Let $P(x)=x^{2016}+2x^{2015}+...+2017,Q(x)=1399x^{1398}+...+2x+1$. Prove that there are strictly increasing sequances $a_i,b_i, i=1,...$ of positive integers such that $gcd(a_i,a_{i+1})=1$ for each $i$. Moreover, for each even $i$, $P(b_i) \nmid a_i, Q(b_i) | a_i$ and for each odd $i$, $P(b_i)|a_i,Q(b_i) \nmid a_i$ Proposed by [i]Shayan Talaei[/i]

2018 Iran Team Selection Test, 3

$n>1$ and distinct positive integers $a_1,a_2,\ldots,a_{n+1}$ are  given. Does there exist a polynomial $p(x)\in\Bbb{Z}[x]$ of degree  $\le n$ that satisfies the following conditions? a. $\forall_{1\le i < j\le n+1}: \gcd(p(a_i),p(a_j))>1 $ b. $\forall_{1\le i < j < k\le n+1}: \gcd(p(a_i),p(a_j),p(a_k))=1 $ [i]Proposed by Mojtaba Zare[/i]

2014 Saudi Arabia GMO TST, 2

Let $S = \{f(a, b) | a, b = 1,2,3, 4$ and $a \ne b\}$, and consider all nonzero polynomials $p(X,Y )$ with integer coefficients such that $p(a, b) = 0$ for every element $(a,b)$ in $S$. (a) What is the minimal degree of such polynomial $p(X, Y )$ ? (b) Determine all such polynomials $p(X, Y )$ with minimal degree.

2012 BAMO, 5

Find all nonzero polynomials $P(x)$ with integers coefficients that satisfy the following property: whenever $a$ and $b$ are relatively prime integers, then $P(a)$ and $P(b)$ are relatively prime as well. Prove that your answer is correct. (Two integers are [b]relatively prime[/b] if they have no common prime factors. For example, $-70$ and $99$ are relatively prime, while $-70$ and $15$ are not relatively prime.)

2015 Indonesia MO Shortlist, A7

Suppose $P(n) $ is a nonconstant polynomial where all of its coefficients are nonnegative integers such that \[ \sum_{i=1}^n P(i) | nP(n+1) \] for every $n \in \mathbb{N}$. Prove that there exists an integer $k \ge 0$ such that \[ P(n) = \binom{n+k}{n-1} P(1) \] for every $n \in \mathbb{N}$.

2011 Dutch IMO TST, 4

Determine all integers $n$ for which the polynomial $P(x) = 3x^3-nx-n-2$ can be written as the product of two non-constant polynomials with integer coeffcients.

1998 Singapore Team Selection Test, 3

Suppose $f(x)$ is a polynomial with integer coefficients satisfying the condition $0 \le f(c) \le 1997$ for each $c \in \{0, 1, ..., 1998\}$. Is is true that $f(0) = f(1) = ... = f(1998)$? (variation of [url=https://artofproblemsolving.com/community/c6h49788p315649]1997 IMO Shortlist p12[/url])

2010 Swedish Mathematical Competition, 3

Find all natural numbers $n \ge 1$ such that there is a polynomial $p(x)$ with integer coefficients for which $p (1) = p (2) = 0$ and where $p (n)$ is a prime number .

1987 Tournament Of Towns, (144) 1

Suppose $p(x)$ is a polynomial with integer coefficients. It is known that $p(a) - p(b) = 1$ (where $a$ and $b$ are integers). Prove that $a$ and $b$ differ by $1$ . (Folklore)

2000 Czech and Slovak Match, 4

Let $P(x)$ be a polynomial with integer coefficients. Prove that the polynomial $Q(x) = P(x^4)P(x^3)P(x^2)P(x)+1$ has no integer roots.

1988 Austrian-Polish Competition, 1

Let $P(x)$ be a polynomial with integer coefficients. Show that if $Q(x) = P(x) +12$ has at least six distinct integer roots, then $P(x)$ has no integer roots.

2015 India Regional MathematicaI Olympiad, 2

Let $P_1(x) = x^2 + a_1x + b_1$ and $P_2(x) = x^2 + a_2x + b_2$ be two quadratic polynomials with integer coeffcients. Suppose $a_1 \ne a_2$ and there exist integers $m \ne n$ such that $P_1(m) = P_2(n), P_2(m) = P_1(n)$. Prove that $a_1 - a_2$ is even.

2015 Irish Math Olympiad, 9

Let $p(x)$ and $q(x)$ be non-constant polynomial functions with integer coeffcients. It is known that the polynomial $p(x)q(x) - 2015$ has at least $33$ different integer roots. Prove that neither $p(x)$ nor $q(x)$ can be a polynomial of degree less than three.

1964 Swedish Mathematical Competition, 3

Find a polynomial with integer coefficients which has $\sqrt2 + \sqrt3$ and $\sqrt2 + \sqrt[3]{3}$ as roots.

1999 Israel Grosman Mathematical Olympiad, 4

Consider a polynomial $f(x) = x^4 +ax^3 +bx^2 +cx+d$ with integer coefficients. Prove that if $f(x)$ has exactly one real root, then it can be factored into nonconstant polynomials with rational coefficients

2006 Estonia Team Selection Test, 1

Let $k$ be any fixed positive integer. Let's look at integer pairs $(a, b)$, for which the quadratic equations $x^2 - 2ax + b = 0$ and $y^2 + 2ay + b = 0$ are real solutions (not necessarily different), which can be denoted by $x_1, x_2$ and $y_1, y_2$, respectively, in such an order that the equation $x_1 y_1 - x_2 y_2 = 4k$. a) Find the largest possible value of the second component $b$ of such a pair of numbers ($a, b)$. b) Find the sum of the other components of all such pairs of numbers.

2015 Saudi Arabia Pre-TST, 3.2

Prove that the polynomial $P(X) = (X^2-12X +11)^4+23$ can not be written as the product of three non-constant polynomials with integer coefficients. (Le Anh Vinh)

2008 Postal Coaching, 2

Find all polynomials $P$ with integer coefficients such that wherever $a, b \in N$ and $a+b$ is a square we have $P(a) + P(b)$ is also a square.

2022 Austrian MO National Competition, 4

Decide whether for every polynomial $P$ of degree at least $1$, there exist infinitely many primes that divide $P(n)$ for at least one positive integer $n$. [i](Walther Janous)[/i]

1995 Romania Team Selection Test, 3

Let $f$ be an irreducible (in $Z[x]$) monic polynomial with integer coefficients and of odd degree greater than $1$. Suppose that the modules of the roots of $f$ are greater than $1$ and that $f(0)$ is a square-free number. Prove that the polynomial $g(x) = f(x^3)$ is also irreducible