Found problems: 283
1956 AMC 12/AHSME, 34
If $ n$ is any whole number, $ n^2(n^2 \minus{} 1)$ is always divisible by
$ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\ \text{any multiple of }12 \qquad\textbf{(D)}\ 12 \minus{} n \qquad\textbf{(E)}\ 12\text{ and }24$
2024 Ukraine National Mathematical Olympiad, Problem 1
Find all pairs $a, b$ of positive integers, for which
$$(a, b) + 3[a, b] = a^3 - b^3$$
Here $(a, b)$ denotes the greatest common divisor of $a, b$, and $[a, b]$ denotes the least common multiple of $a, b$.
[i]Proposed by Oleksiy Masalitin[/i]
2018-IMOC, N2
Find all functions $f:\mathbb N\to\mathbb N$ satisfying
$$\operatorname{lcm}(f(x),y)\gcd(f(x),f(y))=f(x)f(f(y))$$
for all $x,y\in\mathbb N$.
1989 AMC 8, 2
$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000} =$
$\text{(A)}\ .012 \qquad \text{(B)}\ .0246 \qquad \text{(C)}\ .12 \qquad \text{(D)}\ .246 \qquad \text{(E)}\ 246$
2006 VTRMC, Problem 3
Hey,
This problem is from the VTRMC 2006.
3. Recall that the Fibonacci numbers $ F(n)$ are defined by $ F(0) \equal{} 0$, $ F(1) \equal{} 1$ and $ F(n) \equal{} F(n \minus{} 1) \plus{} F(n \minus{} 2)$ for $ n \geq 2$. Determine the last digit of $ F(2006)$ (e.g. the last digit of 2006 is 6).
As, I and a friend were working on this we noticed an interesting relationship when writing the Fibonacci numbers in "mod" notation.
Consider the following,
01 = 1 mod 10
01 = 1 mod 10
02 = 2 mod 10
03 = 3 mod 10
05 = 5 mod 10
08 = 6 mod 10
13 = 3 mod 10
21 = 1 mod 10
34 = 4 mod 10
55 = 5 mod 10
89 = 9 mod 10
Now, consider that between the first appearance and second apperance of $ 5 mod 10$, there is a difference of five terms. Following from this we see that the third appearance of $ 5 mod 10$ occurs at a difference 10 terms from the second appearance. Following this pattern we can create the following relationships.
$ F(55) \equal{} F(05) \plus{} 5({2}^{2})$
This is pretty much as far as we got, any ideas?
1999 Czech and Slovak Match, 6
Prove that for any integer $n \ge 3$, the least common multiple of the numbers $1,2, ... ,n$ is greater than $2^{n-1}$.
2006 Romania National Olympiad, 4
Let $A$ be a set of positive integers with at least 2 elements. It is given that for any numbers $a>b$, $a,b \in A$ we have $\frac{ [a,b] }{ a- b } \in A$, where by $[a,b]$ we have denoted the least common multiple of $a$ and $b$. Prove that the set $A$ has [i]exactly[/i] two elements.
[i]Marius Gherghu, Slatina[/i]
2011 Kyiv Mathematical Festival, 1
Solve the equation
$mn =$ (gcd($m,n$))$^2$ + lcm($m, n$)
in positive integers, where gcd($m, n$) – greatest common divisor of $m,n$, and lcm($m, n$) – least common multiple of $m,n$.
2021 Bolivian Cono Sur TST, 2
Find all posible pairs of positive integers $x,y$ such that $$\text{lcm}(x,y+3001)=\text{lcm}(y,x+3001)$$
2008 Tournament Of Towns, 2
Can it happen that the least common multiple of $1, 2,... , n$ is $2008$ times the least common multiple of $1, 2, ... , m$ for some positive integers $m$ and $n$ ?
2021 Bangladeshi National Mathematical Olympiad, 2
Let $x$ and $y$ be positive integers such that $2(x+y)=gcd(x,y)+lcm(x,y)$. Find $\frac{lcm(x,y)}{gcd(x,y)}$.
1978 Chisinau City MO, 156
The natural numbers $a_1 <a_2 <.... <a_n\le 2n$ are such that the least common multiple of any two of them is greater than $2n$. Prove that $a_1 >\left[\frac{2n}{3}\right]$.
2010 AMC 10, 25
Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that
\[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\]
\[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\]
What is the smallest possible value of $ a$?
$ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$
2001 ITAMO, 4
A positive integer is called [i]monotone[/i] if has at least two digits and all its digits are nonzero and appear in a strictly increasing or strictly decreasing order.
(a) Compute the sum of all monotone five-digit numbers.
(b) Find the number of final zeros in the least common multiple of all monotone numbers (with any number of digits).
2007 AIME Problems, 8
The polynomial $P(x)$ is cubic. What is the largest value of $k$ for which the polynomials $Q_{1}(x) = x^{2}+(k-29)x-k$ and $Q_{2}(x) = 2x^{2}+(2k-43)x+k$ are both factors of $P(x)$?
2011 NIMO Problems, 11
How many ordered pairs of positive integers $(m, n)$ satisfy the system
\begin{align*}
\gcd (m^3, n^2) & = 2^2 \cdot 3^2,
\\ \text{LCM} [m^2, n^3] & = 2^4 \cdot 3^4 \cdot 5^6,
\end{align*}
where $\gcd(a, b)$ and $\text{LCM}[a, b]$ denote the greatest common divisor and least common multiple of $a$ and $b$, respectively?
2008 Bundeswettbewerb Mathematik, 2
Let the positive integers $ a,b,c$ chosen such that the quotients $ \frac{bc}{b\plus{}c},$ $ \frac{ca}{c\plus{}a}$ and $ \frac{ab}{a\plus{}b}$ are integers. Prove that $ a,b,c$ have a common divisor greater than 1.
2006 Iran MO (2nd round), 3
Some books are placed on each other. Someone first, reverses the upper book. Then he reverses the $2$ upper books. Then he reverses the $3$ upper books and continues like this. After he reversed all the books, he starts this operation from the first. Prove that after finite number of movements, the books become exactly like their initial configuration.
2024 Indonesia MO, 8
Let $n \ge 2$ be a positive integer. Suppose $a_1, a_2, \dots, a_n$ are distinct integers. For $k = 1, 2, \dots, n$, let
\[ s_k := \prod_{\substack{i \not= k, \\ 1 \le i \le n}} |a_k - a_i|, \]
i.e. $s_k$ is the product of all terms of the form $|a_k - a_i|$, where $i \in \{ 1, 2, \dots, n \}$ and $i \not= k$.
Find the largest positive integer $M$ such that $M$ divides the least common multiple of $s_1, s_2, \dots, s_n$ for any choices of $a_1, a_2, \dots, a_n$.
2020 Estonia Team Selection Test, 1
For every positive integer $x$, let $k(x)$ denote the number of composite numbers that do not exceed $x$.
Find all positive integers $n$ for which $(k (n))! $ lcm $(1, 2,..., n)> (n - 1) !$ .
1981 IMO Shortlist, 1
[b]a.)[/b] For which $n>2$ is there a set of $n$ consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers?
[b]b.)[/b] For which $n>2$ is there exactly one set having this property?
2012 ELMO Shortlist, 6
Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$.
For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$.
[i]Linus Hamilton.[/i]
1990 Romania Team Selection Test, 3
Prove that for any positive integer $n$, the least common multiple of the numbers $1,2,\ldots,n$ and the least common multiple of the numbers: \[\binom{n}{1},\binom{n}{2},\ldots,\binom{n}{n}\] are equal if and only if $n+1$ is a prime number.
[i]Laurentiu Panaitopol[/i]
2006 Iran MO (3rd Round), 1
$n$ is a natural number. $d$ is the least natural number that for each $a$ that $gcd(a,n)=1$ we know $a^{d}\equiv1\pmod{n}$. Prove that there exist a natural number that $\mbox{ord}_{n}b=d$
2014 Kyiv Mathematical Festival, 4a
a) Prove that for every positive integer $y$ the equality ${\rm lcm}(x,y+1)\cdot {\rm lcm}(x+1,y)=x(x+1)$ holds for infinitely many positive integers $x.$
b) Prove that there exists positive integer $y$ such that the equality ${\rm lcm}(x,y+1)\cdot {\rm lcm}(x+1,y)=y(y+1)$ holds for at least 2014 positive integers $x.$