This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2024 VJIMC, 3

Let $a_1>0$ and for $n \ge 1$ define \[a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}.\] Prove that \[\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.\]

2012 ISI Entrance Examination, 2

Consider the following function \[g(x)=(\alpha+|x|)^{2}e^{(5-|x|)^{2}}\] [b]i)[/b] Find all the values of $\alpha$ for which $g(x)$ is continuous for all $x\in\mathbb{R}$ [b]ii)[/b]Find all the values of $\alpha$ for which $g(x)$ is differentiable for all $x\in\mathbb{R}$.

2024 District Olympiad, P4

Consider the functions $f,g:\mathbb{R}\to\mathbb{R}$ such that $f{}$ is continous. For any real numbers $a<b<c$ there exists a sequence $(x_n)_{n\geqslant 1}$ which converges to $b{}$ and for which the limit of $g(x_n)$ as $n{}$ tends to infinity exists and satisfies \[f(a)<\lim_{n\to\infty}g(x_n)<f(c).\][list=a] [*]Give an example of a pair of such functions $f,g$ for which $g{}$ is discontinous at every point. [*]Prove that if $g{}$ is monotonous, then $f=g.$ [/list]

2007 Romania Team Selection Test, 2

The world-renowned Marxist theorist [i]Joric[/i] is obsessed with both mathematics and social egalitarianism. Therefore, for any decimal representation of a positive integer $n$, he tries to partition its digits into two groups, such that the difference between the sums of the digits in each group be as small as possible. Joric calls this difference the [i]defect[/i] of the number $n$. Determine the average value of the defect (over all positive integers), that is, if we denote by $\delta(n)$ the defect of $n$, compute \[\lim_{n \rightarrow \infty}\frac{\sum_{k = 1}^{n}\delta(k)}{n}.\] [i]Iurie Boreico[/i]

1988 Greece National Olympiad, 4

Let $a_1=5$ and $a_{n+1}= a^2_{n}-2$ for any $n=1,2,...$. a) Find $\lim_{n \rightarrow \infty}\frac{a_{n+1}}{a_1a_2 ...a_{n}}$ b) Find $\lim_{\nu \rightarrow \infty}\left(\frac{1}{a_1}+\frac{1}{a_1a_2}+...+\frac{1}{a_1a_2 ...a_{\nu}}\right)$

2014 District Olympiad, 1

For each positive integer $n$ we consider the function $f_{n}:[0,n]\rightarrow{\mathbb{R}}$ defined by $f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} $, where $\left\lfloor x\right\rfloor $ denotes the floor of the real number $x$. Prove that $f_{n}$ is a Riemann Integrable function and find $\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.$

2019 Jozsef Wildt International Math Competition, W. 57

Let be $x_1=\frac{1}{\sqrt[n+1]{n!}}$ and $x_2=\frac{1}{\sqrt[n+1]{(n-1)!}}$ for all $n\in \mathbb{N}^*$ and $f:\left(\left .\frac{1}{\sqrt[n+1]{(n+1)!}},1\right.\right] \to \mathbb{R}$ where $$f(x)=\frac{n+1}{x\ln (n+1)!+(n+1)\ln \left(x^x\right)}$$Prove that the sequence $(a_n)_{n\geq1}$ when $a_n=\int \limits_{x_1}^{x_2}f(x)dx$ is convergent and compute $$\lim \limits_{n \to \infty}a_n$$

2020 LIMIT Category 2, 18

Evaluate the following sum: $n \choose 1$ $\sin (a) +$ $n \choose 2$ $\sin (2a) +...+$ $n \choose n$ $\sin (na)$ (A) $2^n \cos^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (B) $2^n \sin^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$ (C) $2^n \sin^n \left(\frac{a}{2}\right)\sin \left(\frac{na}{2}\right)$ (D) $2^n \cos^n \left(\frac{a}{2}\right)\cos \left(\frac{na}{2}\right)$

2010 Romania National Olympiad, 4

Let $a\in \mathbb{R}_+$ and define the sequence of real numbers $(x_n)_n$ by $x_1=a$ and $x_{n+1}=\left|x_n-\frac{1}{n}\right|,\ n\ge 1$. Prove that the sequence is convergent and find it's limit.

2011 Putnam, A6

Let $G$ be an abelian group with $n$ elements, and let \[\{g_1=e,g_2,\dots,g_k\}\subsetneq G\] be a (not necessarily minimal) set of distinct generators of $G.$ A special die, which randomly selects one of the elements $g_1,g_2,\dots,g_k$ with equal probability, is rolled $m$ times and the selected elements are multiplied to produce an element $g\in G.$ Prove that there exists a real number $b\in(0,1)$ such that \[\lim_{m\to\infty}\frac1{b^{2m}}\sum_{x\in G}\left(\mathrm{Prob}(g=x)-\frac1n\right)^2\] is positive and finite.

1969 Canada National Olympiad, 2

Determine which of the two numbers $\sqrt{c+1}-\sqrt{c}$, $\sqrt{c}-\sqrt{c-1}$ is greater for any $c\ge 1$.

2020 LIMIT Category 2, 6

Tags: limit , algebra , function
Let $f(x)$ be a real-valued function satisfying $af(x)+bf(-x)=px^2+qx+r$. $a$ and $b$ are distinct real numbers and $p,q,r$ are non-zero real numbers. Then $f(x)=0$ will have real solutions when (A)$\left(\frac{a+b}{a-b}\right)\leq\frac{q^2}{4pr}$ (B)$\left(\frac{a+b}{a-b}\right)\leq\frac{4pr}{q^2}$ (C)$\left(\frac{a+b}{a-b}\right)\geq\frac{q^2}{4pr}$ (D)$\left(\frac{a+b}{a-b}\right)\geq\frac{4pr}{q^2}$

1997 Traian Lălescu, 4

Compute the limit: \[ \lim_{n\to\infty} \frac{1}{n^2}\sum\limits_{1\leq i <j\leq n}\sin \frac{i+j}{n}\].

2014 Putnam, 3

Let $a_0=5/2$ and $a_k=a_{k-1}^2-2$ for $k\ge 1.$ Compute \[\prod_{k=0}^{\infty}\left(1-\frac1{a_k}\right)\] in closed form.

2009 Today's Calculation Of Integral, 406

Find $ \lim_{n\to\infty} \int_0^{\frac{\pi}{2}} x|\cos (2n\plus{}1)x|\ dx$.

1985 IMO, 6

For every real number $x_1$, construct the sequence $x_1,x_2,\ldots$ by setting: \[ x_{n+1}=x_n(x_n+{1\over n}). \] Prove that there exists exactly one value of $x_1$ which gives $0<x_n<x_{n+1}<1$ for all $n$.

1988 Nordic, 4

Let $m_n$ be the smallest value of the function ${{f}_{n}}\left( x \right)=\sum\limits_{k=0}^{2n}{{{x}^{k}}}$ Show that $m_n \to \frac{1}{2}$, as $n \to \infty.$

2020 LIMIT Category 1, 17

Tags: algebra , limit
The sum of $k$ consecutive integers is $90$. Then the sum of all possible values of $k$ is? (A)$89$ (B)$179$ (C)$168$ (D)$119$

Today's calculation of integrals, 764

Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$

2012 Today's Calculation Of Integral, 818

For a function $f(x)=x^3-x^2+x$, find the limit $\lim_{n\to\infty} \int_{n}^{2n}\frac{1}{f^{-1}(x)^3+|f^{-1}(x)|}\ dx.$

2012 Today's Calculation Of Integral, 844

Let $\alpha$ be a solution satisfying the equation $|x|=e^{-x}.$ Let $I_n=\int_0^{\alpha} (xe^{-nx}+\alpha x^{n-1})dx\ (n=1,\ 2,\ \cdots).$ Find $\lim_{n\to\infty} n^2I_n.$

2007 Today's Calculation Of Integral, 228

Let $ x_n \equal{} \int_0^{\frac {\pi}{2}} \sin ^ n \theta \ d\theta \ (n \equal{} 0,\ 1,\ 2,\ \cdots)$. (1) Show that $ x_n \equal{} \frac {n \minus{} 1}{n}x_{n \minus{} 2}$. (2) Find the value of $ nx_nx_{n \minus{} 1}$. (3) Show that a sequence $ \{x_n\}$ is monotone decreasing. (4) Find $ \lim_{n\to\infty} nx_n^2$.

2025 District Olympiad, P3

Let $f:[0,\infty)\rightarrow [0,\infty)$ be a continuous and bijective function, such that $$\lim_{x\rightarrow\infty}\frac{f^{-1}(f(x)/x)}{x}=1.$$ [list=a] [*] Show that $\lim_{x\rightarrow\infty}\frac{f(x)}{x}=\infty$ and $\lim_{x\rightarrow\infty}\frac{f^{-1}(ax)}{f^{-1}(x)}=1$ for any $a>0$. [*] Give an example of function which satisfies the hypothesis.

1996 Tuymaada Olympiad, 6

Given the sequence $f_1(a)=sin(0,5\pi a)$ $f_2(a)=sin(0,5\pi (sin(0,5\pi a)))$ $...$ $f_n(a)=sin(0,5\pi (sin(...(sin(0,5\pi a))...)))$ , where $a$ is any real number. What limit aspire the members of this sequence as $n \to \infty$?

2012 NIMO Problems, 7

For every pair of reals $0 < a < b < 1$, we define sequences $\{x_n\}_{n \ge 0}$ and $\{y_n\}_{n \ge 0}$ by $x_0 = 0$, $y_0 = 1$, and for each integer $n \ge 1$: \begin{align*} x_n & = (1 - a) x_{n - 1} + a y_{n - 1}, \\ y_n & = (1 - b) x_{n - 1} + b y_{n - 1}. \end{align*} The [i]supermean[/i] of $a$ and $b$ is the limit of $\{x_n\}$ as $n$ approaches infinity. Over all pairs of real numbers $(p, q)$ satisfying $\left (p - \textstyle\frac{1}{2} \right)^2 + \left (q - \textstyle\frac{1}{2} \right)^2 \le \left(\textstyle\frac{1}{10}\right)^2$, the minimum possible value of the supermean of $p$ and $q$ can be expressed as $\textstyle\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m + n$. [i]Proposed by Lewis Chen[/i]