This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2006 Petru Moroșan-Trident, 2

Study the convergence of the sequence $$ \left( \sum_{k=2}^{n+1} \sqrt[k]{n+1} -\sum_{k=2}^{n} \sqrt[k]{n} \right)_{n\ge 2} , $$ and calculate its limit. [i]Dan Negulescu[/i]

VMEO IV 2015, 10.1

Where $n$ is a positive integer, the sequence $a_n$ is determined by the formula $$a_{n+1}=\frac{1}{a_1 + a_2 +... + a_n} -\sqrt2, \,a_1 = 1.$$ Find the limit of the sequence $S_n$ defined by $S_n=a_1 + a_2 +... + a_n$.

1996 Tuymaada Olympiad, 6

Given the sequence $f_1(a)=sin(0,5\pi a)$ $f_2(a)=sin(0,5\pi (sin(0,5\pi a)))$ $...$ $f_n(a)=sin(0,5\pi (sin(...(sin(0,5\pi a))...)))$ , where $a$ is any real number. What limit aspire the members of this sequence as $n \to \infty$?

2012 Bogdan Stan, 3

$ \lim_{n\to\infty }\frac{1}{\sqrt[n]{n!}}\left\lfloor \log_5 \sum_{k=2}^{1+5^n} \sqrt[5^n]{k} \right\rfloor $ [i]Taclit Daniela Nadia[/i]

2006 Mathematics for Its Sake, 3

Let be two positive real numbers $ a,b, $ and an infinite arithmetic sequence of natural numbers $ \left( x_n \right)_{n\ge 1} . $ Study the convergence of the sequences $$ \left( \frac{1}{x_n}\sum_{i=1}^n\sqrt[x_i]{b} \right)_{n\ge 1}\text{ and } \left( \left(\sum_{i=1}^n \sqrt[x_i]{a}/\sqrt[x_i]{b} \right)^\frac{x_n}{\ln x_n} \right)_{n\ge 1} , $$ and calculate their limits. [i]Dumitru Acu[/i]

1995 Tuymaada Olympiad, 2

Let $x_1=a, x_2=a^{x_1}, ..., x_n=a^{x_{n-1}}$ where $a>1$. What is the maximum value of $a$ for which lim exists $\lim_{n\to \infty} x_n$ and what is this limit?

2011 Bogdan Stan, 3

Let be a sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ chosen such that the limit of the sequence $ \left( x_{n+2011}-x_n \right)_{n\ge 1} $ exists. Calculate $ \lim_{n\to\infty } \frac{x_n}{n} . $ [i]Cosmin Nițu[/i]