This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 CIIM, 5

Define in the plane the sequence of vectors $v_1, v_2, \ldots$ with initial values $v_1 = (1, 0)$, $v_2 = (-1/\sqrt{2}, 1/\sqrt{2})$ and satisfying the relationship $$v_n=\frac{v_{n-1}+v_{n-2}}{\lVert v_{n-1}+v_{n-2}\rVert},$$ for $n \geq 3$. Show that the sequence is convergent and determine its limit. [b]Note:[/b] The expression $\lVert v \rVert$ denotes the length of the vector $v$.