This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

2004 IMC, 1

Let $A$ be a real $4\times 2$ matrix and $B$ be a real $2\times 4$ matrix such that \[ AB = \left(% \begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{array}% \right). \] Find $BA$.

2025 SEEMOUS, P1

Let $A$ be an $n\times n$ matrix with strictly positive elements and two vectors $u,v\in\mathbb{R}^n$, also with strictly positive elements, such that $$Au=v\text{ and }Av=u.$$ Prove that $u=v$.

2013 Iran Team Selection Test, 7

Nonnegative real numbers $p_{1},\ldots,p_{n}$ and $q_{1},\ldots,q_{n}$ are such that $p_{1}+\cdots+p_{n}=q_{1}+\cdots+q_{n}$ Among all the matrices with nonnegative entries having $p_i$ as sum of the $i$-th row's entries and $q_j$ as sum of the $j$-th column's entries, find the maximum sum of the entries on the main diagonal.

1988 IMO Shortlist, 1

An integer sequence is defined by \[{ a_n = 2 a_{n-1} + a_{n-2}}, \quad (n > 1), \quad a_0 = 0, a_1 = 1.\] Prove that $2^k$ divides $a_n$ if and only if $2^k$ divides $n$.

1967 IMO Shortlist, 4

In what case does the system of equations $\begin{matrix} x + y + mz = a \\ x + my + z = b \\ mx + y + z = c \end{matrix}$ have a solution? Find conditions under which the unique solution of the above system is an arithmetic progression.

Gheorghe Țițeica 2025, P2

Let $n\geq 2$ and $A,B\in\mathcal{M}_n(\mathbb{C})$ such that $$\{\text{rank}(A^k)\mid k\geq 1\}=\{\text{rank}(B^k)\mid k\geq 1\}.$$ Prove that $\text{rank}(A^k)=\text{rank}(B^k)$ for all $k\geq 1$. [i]Cristi Săvescu[/i]

2016 Brazil Undergrad MO, 4

Let $$A=\left( \begin{array}{cc} 4 & -\sqrt{5} \\ 2\sqrt{5} & -3 \end{array} \right) $$ Find all pairs of integers \(m,n\) with \(n \geq 1\) and \(|m| \leq n\) such as all entries of \(A^n-(m+n^2)A\) are integer.

1984 Austrian-Polish Competition, 7

A $m\times n$ matrix $(a_{ij})$ of real numbers satisfies $|a_{ij}| <1$ and $\sum_{i=1}^m a_{ij}= 0$ for all$ j$. Show that one can permute the entries in each column in such a way that the obtained matrix $(b_{ij})$ satisfies $\sum_{j=1}^n b_{ij} < 2$ for all $i$.

2013 District Olympiad, 2

Let the matrices of order 2 with the real elements $A$ and $B$ so that $AB={{A}^{2}}{{B}^{2}}-{{\left( AB \right)}^{2}}$ and $\det \left( B \right)=2$. a) Prove that the matrix $A$ is not invertible. b) Calculate $\det \left( A+2B \right)-\det \left( B+2A \right)$.

2013 European Mathematical Cup, 1

In each field of a table there is a real number. We call such $n \times n$ table [i]silly[/i] if each entry equals the product of all the numbers in the neighbouring fields. a) Find all $2 \times 2$ silly tables. b) Find all $3 \times 3$ silly tables.

2005 Germany Team Selection Test, 3

For an ${n\times n}$ matrix $A$, let $X_{i}$ be the set of entries in row $i$, and $Y_{j}$ the set of entries in column $j$, ${1\leq i,j\leq n}$. We say that $A$ is [i]golden[/i] if ${X_{1},\dots ,X_{n},Y_{1},\dots ,Y_{n}}$ are distinct sets. Find the least integer $n$ such that there exists a ${2004\times 2004}$ golden matrix with entries in the set ${\{1,2,\dots ,n\}}$.

2004 IMO Shortlist, 4

Consider a matrix of size $n\times n$ whose entries are real numbers of absolute value not exceeding $1$. The sum of all entries of the matrix is $0$. Let $n$ be an even positive integer. Determine the least number $C$ such that every such matrix necessarily has a row or a column with the sum of its entries not exceeding $C$ in absolute value. [i]Proposed by Marcin Kuczma, Poland[/i]

MIPT student olimpiad spring 2023, 1

In $R^n$ is given $n-1$ vectors, the coordinates of each are zero-sum integers. Prove that the $(n-1)$-dimensional volume of an $(n-1)$-dimensional parallelepiped $P$ stretched by these vectors, is the product of an integer and $\sqrt(n)$.

2021 Simon Marais Mathematical Competition, A3

Let $\mathcal{M}$ be the set of all $2021 \times 2021$ matrices with at most two entries in each row equal to $1$ and all other entries equal to $0$. Determine the size of the set $\{ \det A : A \in M \}$. [i]Here $\det A$ denotes the determinant of the matrix $A$.[/i]

2002 Putnam, 4

In Determinant Tic-Tac-Toe, Player $1$ enters a $1$ in an empty $3 \times 3$ matrix. Player $0$ counters with a $0$ in a vacant position and play continues in turn intil the $ 3 \times 3 $ matrix is completed with five $1$’s and four $0$’s. Player $0$ wins if the determinant is $0$ and player $1$ wins otherwise. Assuming both players pursue optimal strategies, who will win and how?

2005 Miklós Schweitzer, 5

Let $GL(n, K)$ be a linear group over the field K with a topology induced by a non-Archimedean absolute value of the field K. Prove that if the matrix $M \in GL (n, K)$ is contained by some compact subgroup of $GL(n, K)$, then all eigenvalues of M have absolute value 1.

PEN A Problems, 11

Let $a, b, c, d$ be integers. Show that the product \[(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)\] is divisible by $12$.

2009 Vietnam National Olympiad, 1

[b]Problem 1.[/b]Find all $ (x,y)$ such that: \[ \{\begin{matrix} \displaystyle\dfrac {1}{\sqrt {1 + 2x^2}} + \dfrac {1}{\sqrt {1 + 2y^2}} & = & \displaystyle\dfrac {2}{\sqrt {1 + 2xy}} \\ \sqrt {x(1 - 2x)} + \sqrt {y(1 - 2y)} & = & \displaystyle\dfrac {2}{9} \end{matrix}\; \]

2011 Math Prize for Girls Olympiad, 4

Let $M$ be a matrix with $r$ rows and $c$ columns. Each entry of $M$ is a nonnegative integer. Let $a$ be the average of all $rc$ entries of $M$. If $r > {(10 a + 10)}^c$, prove that $M$ has two identical rows.

2021 Science ON all problems, 2

Consider $A,B\in\mathcal{M}_n(\mathbb{C})$ for which there exist $p,q\in\mathbb{C}$ such that $pAB-qBA=I_n$. Prove that either $(AB-BA)^n=O_n$ or the fraction $\frac{p}{q}$ is well-defined ($q \neq 0$) and it is a root of unity. [i](Sergiu Novac)[/i]

1959 Putnam, B4

Given the following matrix $$\begin{pmatrix} 11& 17 & 25& 19& 16\\ 24 &10 &13 & 15&3\\ 12 &5 &14& 2&18\\ 23 &4 &1 &8 &22 \\ 6&20&7 &21&9 \end{pmatrix},$$ choose five of these elements, no two from the same row or column, in such a way that the minimum of these elements is as large as possible.

1999 IMC, 1

a) Show that $\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I$. b) Show that $\det(A)>0, \forall A$ fulfilling the above condition.

1976 Spain Mathematical Olympiad, 6

Given a square matrix $M$ of order $n$ over the field of numbers real, find, as a function of $M$, two matrices, one symmetric and one antisymmetric, such that their sum is precisely $ M$.

2019 District Olympiad, 3

Let $n$ be an odd natural number and $A,B \in \mathcal{M}_n(\mathbb{C})$ be two matrices such that $(A-B)^2=O_n.$ Prove that $\det(AB-BA)=0.$

2013 IMC, 3

Suppose that $\displaystyle{{v_1},{v_2},...,{v_d}}$ are unit vectors in $\displaystyle{{{\Bbb R}^d}}$. Prove that there exists a unitary vector $\displaystyle{u}$ such that $\displaystyle{\left| {u \cdot {v_i}} \right| \leq \frac{1}{{\sqrt d }}}$ for $\displaystyle{i = 1,2,...,d}$. [b]Note.[/b] Here $\displaystyle{ \cdot }$ denotes the usual scalar product on $\displaystyle{{{\Bbb R}^d}}$. [i]Proposed by Tomasz Tkocz, University of Warwick.[/i]