This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2005 Baltic Way, 5

Let $a$, $b$, $c$ be positive real numbers such that $abc=1$. Prove that \[\frac a{a^{2}+2}+\frac b{b^{2}+2}+\frac c{c^{2}+2}\leq 1 \]

2005 Today's Calculation Of Integral, 74

$p,q$ satisfies $px+q\geq \ln x$ at $a\leq x\leq b\ (0<a<b)$. Find the value of $p,q$ for which the following definite integral is minimized and then the minimum value. \[\int_a^b (px+q-\ln x)dx\]

2011 Today's Calculation Of Integral, 736

Evaluate \[\int_0^1 \frac{(e^x+1)\{e^x+1+(1+x+e^x)\ln (1+x+e^x)\}}{1+x+e^x}\ dx\]

1997 Vietnam Team Selection Test, 2

Tags: logarithm , algebra
Find all pairs of positive real numbers $ (a, b)$ such that for every $ n \in\mathbb{N}^*$ and every real root $ x_n$ of the equation $ 4n^2x \equal{} \log_2(2n^2x \plus{} 1)$ we always have $ a^{x_n} \plus{} b^{x_n} \ge 2 \plus{} 3x_n$.

1956 AMC 12/AHSME, 18

Tags: logarithm
If $ 10^{2y} \equal{} 25$, then $ 10^{ \minus{} y}$ equals: $ \textbf{(A)}\ \minus{} \frac {1}{5} \qquad\textbf{(B)}\ \frac {1}{625} \qquad\textbf{(C)}\ \frac {1}{50} \qquad\textbf{(D)}\ \frac {1}{25} \qquad\textbf{(E)}\ \frac {1}{5}$

1951 AMC 12/AHSME, 34

The value of $ 10^{\log_{10}7}$ is: $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ \log_{10} 7 \qquad\textbf{(E)}\ \log_7 10$

2011 Regional Competition For Advanced Students, 2

Determine all triples $(x,y,z)$ of real numbers such that the following system of equations holds true: \begin{align*}2^{\sqrt[3]{x^2}}\cdot 4^{\sqrt[3]{y^2}}\cdot 16^{\sqrt[3]{z^2}}&=128\\ \left(xy^2+z^4\right)^2&=4+\left(xy^2-z^4\right)^2\mbox{.}\end{align*}

2012 Harvard-MIT Mathematics Tournament, 7

Let $\otimes$ be a binary operation that takes two positive real numbers and returns a positive real number. Suppose further that $\otimes$ is continuous, commutative $(a\otimes b=b\otimes a)$, distributive across multiplication $(a\otimes(bc)=(a\otimes b)(a\otimes c))$, and that $2\otimes 2=4$. Solve the equation $x\otimes y=x$ for $y$ in terms of $x$ for $x>1$.

2009 Harvard-MIT Mathematics Tournament, 3

Compute $e^A$ where $A$ is defined as \[\int_{3/4}^{4/3}\dfrac{2x^2+x+1}{x^3+x^2+x+1}dx.\]

2011 Today's Calculation Of Integral, 726

Let $P(x,\ y)\ (x>0,\ y>0)$ be a point on the curve $C: x^2-y^2=1$. If $x=\frac{e^u+e^{-u}}{2}\ (u\geq 0)$, then find the area bounded by the line $OP$, the $x$ axis and the curve $C$ in terms of $u$.

2020 AIME Problems, 2

There is a unique positive real number $x$ such that the three numbers $\log_8(2x),\log_4x,$ and $\log_2x,$ in that order, form a geometric progression with positive common ratio. The number $x$ can be written as $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2008 Moldova MO 11-12, 8

Evaluate $ \displaystyle I \equal{} \int_0^{\frac\pi4}\left(\sin^62x \plus{} \cos^62x\right)\cdot \ln(1 \plus{} \tan x)\text{d}x$.

2005 Putnam, B3

Find all differentiable functions $f: (0,\infty)\mapsto (0,\infty)$ for which there is a positive real number $a$ such that \[ f'\left(\frac ax\right)=\frac x{f(x)} \] for all $x>0.$

1979 IMO Longlists, 37

Tags: logarithm
Find all bases of logarithms in which a real positive number can be equal to its logarithm or prove that none exist.

2005 Today's Calculation Of Integral, 3

Calculate the following indefinite integrals. [1] $\int \sin x\sin 2x dx$ [2] $\int \frac{e^{2x}}{e^x-1}dx$ [3] $\int \frac{\tan ^2 x}{\cos ^2 x}dx$ [4] $\int \frac{e^x+e^{-x}}{e^x-e^{-x}}dx$ [5] $\int \frac{e^x}{e^x+1}dx$

2006 Moldova National Olympiad, 10.4

Find all real values of the real parameter $a$ such that the equation \[ 2x^{2}-6ax+4a^{2}-2a-2+\log_{2}(2x^{2}+2x-6ax+4a^{2})= \] \[ =\log_{2}(x^{2}+2x-3ax+2a^{2}+a+1). \] has a unique solution.

2020 Kosovo National Mathematical Olympiad, 3

Let $a$ and $b$ be real numbers such that $a+b=\log_2( \log_2 3)$. What is the minimum value of $2^a + 3^b$ ?

2014 China National Olympiad, 1

Let $n=p_1^{a_1}p_2^{a_2}\cdots p_t^{a_t}$ be the prime factorisation of $n$. Define $\omega(n)=t$ and $\Omega(n)=a_1+a_2+\ldots+a_t$. Prove or disprove: For any fixed positive integer $k$ and positive reals $\alpha,\beta$, there exists a positive integer $n>1$ such that i) $\frac{\omega(n+k)}{\omega(n)}>\alpha$ ii) $\frac{\Omega(n+k)}{\Omega(n)}<\beta$.

PEN A Problems, 13

Show that for all prime numbers $p$, \[Q(p)=\prod^{p-1}_{k=1}k^{2k-p-1}\] is an integer.

III Soros Olympiad 1996 - 97 (Russia), 11.6

On the coordinate plane, draw a set of points $M(x,y)$, the coordinates of which satisfy the inequality $$\log_{x+y} (x^2+y^2) \le 1.$$

2010 Today's Calculation Of Integral, 554

Use $ \frac{d}{dx} \ln (2x\plus{}\sqrt{4x^2\plus{}1}),\ \frac{d}{dx}(x\sqrt{4x^2\plus{}1})$ to evaluate $ \int_0^1 \sqrt{4x^2\plus{}1}dx$.

2012 ELMO Shortlist, 2

Determine whether it's possible to cover a $K_{2012}$ with a) 1000 $K_{1006}$'s; b) 1000 $K_{1006,1006}$'s. [i]David Yang.[/i]

1950 AMC 12/AHSME, 25

Tags: logarithm
The value of $ \log_5 \frac {(125)(625)}{25}$ is equal to: $\textbf{(A)}\ 725 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 3125 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \text{None of these}$

1985 Traian Lălescu, 1.4

Let $ a $ be a non-negative real number distinct from $ 1. $ [b]a)[/b] For which positive values $ x $ the equation $$ \left\lfloor\log_a x\right\rfloor +\left\lfloor \frac{1}{3} +\log_a x\right\rfloor =\left\lfloor 2\cdot\log_a x\right\rfloor $$ is true? [b]b)[/b] Solve $ \left\lfloor\log_3 x\right\rfloor +\left\lfloor \frac{1}{3} +\log_3 x\right\rfloor =3. $