This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 638

2014 Contests, 1

Determine all pairs $(a, b)$ of real numbers for which there exists a unique symmetric $2\times 2$ matrix $M$ with real entries satisfying $\mathrm{trace}(M)=a$ and $\mathrm{det}(M)=b$. (Proposed by Stephan Wagner, Stellenbosch University)

2014 SEEMOUS, Problem 1

Let $n$ be a nonzero natural number and $f:\mathbb R\to\mathbb R\setminus\{0\}$ be a function such that $f(2014)=1-f(2013)$. Let $x_1,x_2,x_3,\ldots,x_n$ be real numbers not equal to each other. If $$\begin{vmatrix}1+f(x_1)&f(x_2)&f(x_3)&\cdots&f(x_n)\\f(x_1)&1+f(x_2)&f(x_3)&\cdots&f(x_n)\\f(x_1)&f(x_2)&1+f(x_3)&\cdots&f(x_n)\\\vdots&\vdots&\vdots&\ddots&\vdots\\f(x_1)&f(x_2)&f(x_3)&\cdots&1+f(x_n)\end{vmatrix}=0,$$prove that $f$ is not continuous.

1976 USAMO, 5

If $ P(x),Q(x),R(x)$, and $ S(x)$ are all polynomials such that \[ P(x^5)\plus{}xQ(x^5)\plus{}x^2R(x^5)\equal{}(x^4\plus{}x^3\plus{}x^2\plus{}x\plus{}1)S(x),\] prove that $ x\minus{}1$ is a factor of $ P(x)$.

2004 Nicolae Coculescu, 4

Let be a matrix $ A\in\mathcal{M}_2(\mathbb{R}) $ having the property that the numbers $ \det (A+X) ,\det (A^2+X^2) ,\det (A^3+X^3) $ are (in this order) in geometric progression, for any matrix $ X\in\mathcal{M}_2(\mathbb{R}) . $ Prove that $ A=0. $ [i]Marius Ghergu[/i]

2006 Poland - Second Round, 3

Given is a prime number $p$ and natural $n$ such that $p \geq n \geq 3$. Set $A$ is made of sequences of lenght $n$ with elements from the set $\{0,1,2,...,p-1\}$ and have the following property: For arbitrary two sequence $(x_1,...,x_n)$ and $(y_1,...,y_n)$ from the set $A$ there exist three different numbers $k,l,m$ such that: $x_k \not = y_k$, $x_l \not = y_l$, $x_m \not = y_m$. Find the largest possible cardinality of $A$.

2012 IMC, 4

Let $n \ge 2$ be an integer. Find all real numbers $a$ such that there exist real numbers $x_1,x_2,\dots,x_n$ satisfying \[x_1(1-x_2)=x_2(1-x_3)=\dots=x_n(1-x_1)=a.\] [i]Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.[/i]

1984 Putnam, A3

Let $n$ be a positive integer. Let $a,b,x$ be real numbers, with $a \neq b$ and let $M_n$ denote the $2n x 2n $ matrix whose $(i,j)$ entry $m_{ij}$ is given by $m_{ij}=x$ if $i=j$, $m_{ij}=a$ if $i \not= j$ and $i+j$ is even, $m_{ij}=b$ if $i \not= j$ and $i+j$ is odd. For example $ M_2=\begin{vmatrix}x& b& a & b\\ b& x & b &a\\ a & b& x & b\\ b & a & b & x \end{vmatrix}$. Express $\lim_{x\to\ 0} \frac{ det M_n}{ (x-a)^{(2n-2)} }$ as a polynomial in $a,b $ and $n$ . P.S. How write in latex $m_{ij}=...$ with symbol for the system (because is multiform function?)

2013 Brazil Team Selection Test, 3

In a $999 \times 999$ square table some cells are white and the remaining ones are red. Let $T$ be the number of triples $(C_1,C_2,C_3)$ of cells, the first two in the same row and the last two in the same column, with $C_1,C_3$ white and $C_2$ red. Find the maximum value $T$ can attain. [i]Proposed by Merlijn Staps, The Netherlands[/i]

2004 Spain Mathematical Olympiad, Problem 1

We have a set of ${221}$ real numbers whose sum is ${110721}$. It is deemed that the numbers form a rectangular table such that every row as well as the first and last columns are arithmetic progressions of more than one element. Prove that the sum of the elements in the four corners is equal to ${2004}$.

1967 IMO Shortlist, 5

Solve the system of equations: $ \begin{matrix} x^2 + x - 1 = y \\ y^2 + y - 1 = z \\ z^2 + z - 1 = x. \end{matrix} $

1958 November Putnam, A5

Show that the number of non-zero integers in the expansion of the $n$-th order determinant having zeroes in the main diagonal and ones elsewhere is $$n ! \left(1- \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^{n}}{n!} \right) .$$

2016 Croatia Team Selection Test, Problem 2

Let $N$ be a positive integer. Consider a $N \times N$ array of square unit cells. Two corner cells that lie on the same longest diagonal are colored black, and the rest of the array is white. A [i]move[/i] consists of choosing a row or a column and changing the color of every cell in the chosen row or column. What is the minimal number of additional cells that one has to color black such that, after a finite number of moves, a completely black board can be reached?

2001 IMO Shortlist, 8

Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

2007 Princeton University Math Competition, 7

Given two sequences $x_n$ and $y_n$ defined by $x_0 = y_0 = 7$, \[x_n = 4x_{n-1}+3y_{n-1}, \text{ and}\]\[y_n = 3y_{n-1}+2x_{n-1},\] find $\lim_{n \to \infty} \frac{x_n}{y_n}$.

2013 Putnam, 5

Let $X=\{1,2,\dots,n\},$ and let $k\in X.$ Show that there are exactly $k\cdot n^{n-1}$ functions $f:X\to X$ such that for every $x\in X$ there is a $j\ge 0$ such that $f^{(j)}(x)\le k.$ [Here $f^{(j)}$ denotes the $j$th iterate of $f,$ so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f\left(f^{(j)}(x)\right).$]

1987 Putnam, B5

Let $O_n$ be the $n$-dimensional vector $(0,0,\cdots, 0)$. Let $M$ be a $2n \times n$ matrix of complex numbers such that whenever $(z_1, z_2, \dots, z_{2n})M = O_n$, with complex $z_i$, not all zero, then at least one of the $z_i$ is not real. Prove that for arbitrary real numbers $r_1, r_2, \dots, r_{2n}$, there are complex numbers $w_1, w_2, \dots, w_n$ such that \[ \mathrm{re}\left[ M \left( \begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right) \right] = \left( \begin{array}{c} r_1 \\ \vdots \\ r_n \end{array} \right). \] (Note: if $C$ is a matrix of complex numbers, $\mathrm{re}(C)$ is the matrix whose entries are the real parts of the entries of $C$.)

2008 IMC, 5

Let $ n$ be a positive integer, and consider the matrix $ A \equal{} (a_{ij})_{1\leq i,j\leq n}$ where $ a_{ij} \equal{} 1$ if $ i\plus{}j$ is prime and $ a_{ij} \equal{} 0$ otherwise. Prove that $ |\det A| \equal{} k^2$ for some integer $ k$.

1994 IMO Shortlist, 2

In a certain city, age is reckoned in terms of real numbers rather than integers. Every two citizens $x$ and $x'$ either know each other or do not know each other. Moreover, if they do not, then there exists a chain of citizens $x = x_0, x_1, \ldots, x_n = x'$ for some integer $n \geq 2$ such that $ x_{i-1}$ and $x_i$ know each other. In a census, all male citizens declare their ages, and there is at least one male citizen. Each female citizen provides only the information that her age is the average of the ages of all the citizens she knows. Prove that this is enough to determine uniquely the ages of all the female citizens.

2010 Contests, 4

Let $n$ be a positive integer. Find the smallest positive integer $k$ with the property that for any colouring nof the squares of a $2n$ by $k$ chessboard with $n$ colours, there are $2$ columns and $2$ rows such that the $4$ squares in their intersections have the same colour.

2010 Contests, 4

Let $p$ be a positive integer, $p>1.$ Find the number of $m\times n$ matrices with entries in the set $\left\{ 1,2,\dots,p\right\} $ and such that the sum of elements on each row and each column is not divisible by $p.$

2004 Unirea, 2

Let be two matrices $ A,N\in\mathcal{M}_2(\mathbb{R}) $ that commute and such that $ N $ is nilpotent. Show that: [b]a)[/b] $ \det (A+N)=\det (A) $ [b]b)[/b] if $ A $ is general linear, then the matrix $ A+N $ is invertible and $ (A+N)^{-1}=(A-N)A^{-2} . $

2012 Romania National Olympiad, 2

[color=darkred]Let $n$ and $k$ be two natural numbers such that $n\ge 2$ and $1\le k\le n-1$ . Prove that if the matrix $A\in\mathcal{M}_n(\mathbb{C})$ has exactly $k$ minors of order $n-1$ equal to $0$ , then $\det (A)\ne 0$ .[/color]

2007 Nicolae Păun, 2

For a given natural number, $ n\ge 2, $ consider two matrices $ A,B\in\mathcal{M}_n(\mathbb{C}) $ that commute and such that $ A $ is invertible and that the function $ M:\mathbb{C}\longrightarrow\mathbb{C} ,M(x)=\det (A+xB) $ is bounded above or below. Prove that $ B^n=0. $ [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2014 Romania National Olympiad, 4

Let $ A\in\mathcal{M}_4\left(\mathbb{R}\right) $ be an invertible matrix whose trace is equal to the trace of its adjugate, which is nonzero. Show that $ A^2+I $ is singular if and only if there exists a nonzero matrix in $ \mathcal{M}_4\left( \mathbb{R} \right) $ that anti-commutes with it.

2007 Purple Comet Problems, 15

The alphabet in its natural order $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ is $T_0$. We apply a permutation to $T_0$ to get $T_1$ which is $\text{JQOWIPANTZRCVMYEGSHUFDKBLX}$. If we apply the same permutation to $T_1$, we get $T_2$ which is $\text{ZGYKTEJMUXSODVLIAHNFPWRQCB}$. We continually apply this permutation to each $T_m$ to get $T_{m+1}$. Find the smallest positive integer $n$ so that $T_n=T_0$.