Found problems: 638
2004 Romania Team Selection Test, 7
Let $a,b,c$ be 3 integers, $b$ odd, and define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=4$, $x_1=0$, $x_2=2c$, $x_3=3b$ and for all positive integers $n$ we have
\[ x_{n+3} = ax_{n-1}+bx_n + cx_{n+1} . \]
Prove that for all positive integers $m$, and for all primes $p$ the number $x_{p^m}$ is divisible by $p$.
2004 Germany Team Selection Test, 2
Let $x_1,\ldots, x_n$ and $y_1,\ldots, y_n$ be real numbers. Let $A = (a_{ij})_{1\leq i,j\leq n}$ be the matrix with entries \[a_{ij} = \begin{cases}1,&\text{if }x_i + y_j\geq 0;\\0,&\text{if }x_i + y_j < 0.\end{cases}\] Suppose that $B$ is an $n\times n$ matrix with entries $0$, $1$ such that the sum of the elements in each row and each column of $B$ is equal to the corresponding sum for the matrix $A$. Prove that $A=B$.
2004 China Team Selection Test, 2
Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
2005 Miklós Schweitzer, 6
$SU_2(\mathbb{C})=\left\{\begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix} : z,w\in\mathbb{C} , z\bar{z}+w\bar{w}=1\right\}$
A and B are 2 elements of the above matrix group and have eigenvalues $e^{i\theta_1}$ , $e^{-i\theta_1}$ and $e^{i\theta_2}$ , $e^{-i\theta_2}$respectively, where $0\leq\theta_i\leq\pi$ . Prove that if AB has eigenvalue $e^{i\theta_3}$ , then $\theta_3$ satisfies the inequality $|\theta_1-\theta_2|\leq\theta_3\leq \min\{\theta_1+\theta_2 , 2\pi-(\theta_1+\theta_2)\}$
2005 China Northern MO, 4
Let $A$ be the set of $n$-digit integers whose digits are all from $\{ 1, 2, 3, 4, 5 \}$. $B$ is subset of $A$ such that it contains digit $5$, and there is no digit $3$ in front of digit $5$ (i.e. for $n = 2$, $35$ is not allowed, but $53$ is allowed). How many elements does set $B$ have?
2011 Putnam, A4
For which positive integers $n$ is there an $n\times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?
1971 IMO Shortlist, 11
The matrix
\[A=\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix}\]
satisfies the inequality $\sum_{j=1}^n |a_{j1}x_1 + \cdots+ a_{jn}x_n| \leq M$ for each choice of numbers $x_i$ equal to $\pm 1$. Show that
\[|a_{11} + a_{22} + \cdots+ a_{nn}| \leq M.\]
2013 Bogdan Stan, 2
For a $ n\times n $ real matrix $ M, $ prove that
[b]a)[/b] $ M=0 $ if $ \text{tr} \left(M^tM\right) =0. $
[b]b)[/b] $ ^tM=M $ if $M^tM=M^2. $
[b]c)[/b] $ ^tM=-M $ if $ M^tM=-M^2. $
[b]d)[/b] Give example of a $ 2\times 2 $ real matrix $ A $ satisfying the following:
$ \text{(i)} ^tA\cdot A^2=A^3 $ and $ ^tA\neq A $
$ \text{(ii)} ^tA\cdot A^2=-A^3 $ and $ ^tA\neq -A $
[i]Vasile Pop[/i]
2021 China Team Selection Test, 1
Let $ n(\ge2) $ be a positive integer. Find the minimum $ m $, so that there exists $x_{ij}(1\le i ,j\le n)$ satisfying:
(1)For every $1\le i ,j\le n, x_{ij}=max\{x_{i1},x_{i2},...,x_{ij}\} $ or $ x_{ij}=max\{x_{1j},x_{2j},...,x_{ij}\}.$
(2)For every $1\le i \le n$, there are at most $m$ indices $k$ with $x_{ik}=max\{x_{i1},x_{i2},...,x_{ik}\}.$
(3)For every $1\le j \le n$, there are at most $m$ indices $k$ with $x_{kj}=max\{x_{1j},x_{2j},...,x_{kj}\}.$
1969 Miklós Schweitzer, 12
Let $ A$ and $ B$ be nonsingular matrices of order $ p$, and let $ \xi$ and $ \eta$ be independent random vectors of dimension $ p$. Show that if $ \xi,\eta$ and $ \xi A\plus{} \eta B$ have the same distribution, if their first and second moments exist, and if their covariance matrix is the identity matrix, then these random vectors are normally distributed.
[i]B. Gyires[/i]
2013 VTRMC, Problem 6
Let
\begin{align*}X&=\begin{pmatrix}7&8&9\\8&-9&-7\\-7&-7&9\end{pmatrix}\\Y&=\begin{pmatrix}9&8&-9\\8&-7&7\\7&9&8\end{pmatrix}.\end{align*}Let $A=Y^{-1}X$ and let $B$ be the inverse of $X^{-1}+A^{-1}$. Find a matrix $M$ such that $M^2=XY-BY$ (you may assume that $A$ and $X^{-1}+A^{-1}$ are invertible).
2002 IMC, 11
Let $A$ be a complex $n \times n$ Matrix for $n >1$. Let $A^{H}$ be the conjugate transpose of $A$.
Prove that $A\cdot A^{H} =I_{n}$ if and only if $A=S\cdot (S^{H})^{-1}$ for some complex Matrix $S$.
2001 India Regional Mathematical Olympiad, 4
Consider an $n \times n$ array of numbers $a_{ij}$ (standard notation). Suppose each row consists of the $n$ numbers $1,2,\ldots n$ in some order and $a_{ij} = a_{ji}$ for $i , j = 1,2, \ldots n$. If $n$ is odd, prove that the numbers $a_{11}, a_{22} , \ldots a_{nn}$ are $1,2,3, \ldots n$ in some order.
1991 Putnam, A2
$M$ and $N$ are real unequal $n\times n$ matrices satisfying $M^3=N^3$ and $M^2N=N^2M$. Can we choose $M$ and $N$ so that $M^2+N^2$ is invertible?
2017 Korea USCM, 1
$n(\geq 2)$ is a given integer and $T$ is set of all $n\times n$ matrices whose entries are elements of the set $S=\{1,\cdots,2017\}$. Evaluate the following value.
\[\sum_{A\in T} \text{det}(A)\]
1998 Iran MO (3rd Round), 3
Let $A,B$ be two matrices with positive integer entries such that sum of entries of a row in $A$ is equal to sum of entries of the same row in $B$ and sum of entries of a column in $A$ is equal to sum of entries of the same column in $B$. Show that there exists a sequence of matrices $A_1,A_2,A_3,\cdots , A_n$ such that all entries of the matrix $A_i$ are positive integers and in the sequence
\[A=A_0,A_1,A_2,A_3,\cdots , A_n=B,\]
for each index $i$, there exist indexes $k,j,m,n$ such that
\[\begin{array}{*{20}{c}}
\\
{{A_{i + 1}} - {A_{i}} = }
\end{array}\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
\quad \quad \ \ j& \ \ \ {k}
\end{array}} \\
{\begin{array}{*{20}{c}}
m \\
n
\end{array}\left( {\begin{array}{*{20}{c}}
{ + 1}&{ - 1} \\
{ - 1}&{ + 1}
\end{array}} \right)}
\end{array} \ \text{or} \ \begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
\quad \quad \ \ j& \ \ \ {k}
\end{array}} \\
{\begin{array}{*{20}{c}}
m \\
n
\end{array}\left( {\begin{array}{*{20}{c}}
{ - 1}&{ + 1} \\
{ + 1}&{ - 1}
\end{array}} \right)}
\end{array}.\]
That is, all indices of ${A_{i + 1}} - {A_{i}}$ are zero, except the indices $(m,j), (m,k), (n,j)$, and $(n,k)$.
2022 CIIM, 2
Let $v \in \mathbb{R}^2$ a vector of length 1 and $A$ a $2 \times 2$ matrix with real entries such that:
(i) The vectors $A v, A^2 v$ y $A^3 v$ are also of length 1.
(ii) The vector $A^2 v$ isn't equal to $\pm v$ nor to $\pm A v$.
Prove that $A^t A=I_2$.
1988 Greece National Olympiad, 3
Let $A$ be a $n \times n$ matrix of real numbers such that $A^2+\mathbb{I}=A$, where $\mathbb{I}$ is the identity $n \times n$ matrix. Prove that the matrix $A^{3n}$ , where $\nu\in\mathbb{Z}$ takes only two values and find those values.
2005 India IMO Training Camp, 3
Consider a matrix of size $n\times n$ whose entries are real numbers of absolute value not exceeding $1$. The sum of all entries of the matrix is $0$. Let $n$ be an even positive integer. Determine the least number $C$ such that every such matrix necessarily has a row or a column with the sum of its entries not exceeding $C$ in absolute value.
[i]Proposed by Marcin Kuczma, Poland[/i]
2013 IMC, 1
Let $\displaystyle{A}$ and $\displaystyle{B}$ be real symmetric matrixes with all eigenvalues strictly greater than $\displaystyle{1}$. Let $\displaystyle{\lambda }$ be a real eigenvalue of matrix $\displaystyle{{\rm A}{\rm B}}$. Prove that $\displaystyle{\left| \lambda \right| > 1}$.
[i]Proposed by Pavel Kozhevnikov, MIPT, Moscow.[/i]
2003 VJIMC, Problem 1
Two real square matrices $A$ and $B$ satisfy the conditions $A^{2002}=B^{2003}=I$ and $AB=BA$. Prove that $A+B+I$ is invertible. (The symbol $I$ denotes the identity matrix.)
2010 Contests, 2
How many ordered pairs of positive integers $(x,y)$ are there such that $y^2-x^2=2y+7x+4$?
$ \textbf{(A)}\ 3
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 1
\qquad\textbf{(D)}\ 0
\qquad\textbf{(E)}\ \text{Infinitely many}
$
2004 USA Team Selection Test, 5
Let $A = (0, 0, 0)$ in 3D space. Define the [i]weight[/i] of a point as the sum of the absolute values of the coordinates. Call a point a [i]primitive lattice point[/i] if all of its coordinates are integers whose gcd is 1. Let square $ABCD$ be an [i]unbalanced primitive integer square[/i] if it has integer side length and also, $B$ and $D$ are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.
2008 Harvard-MIT Mathematics Tournament, 29
Let $ (x,y)$ be a pair of real numbers satisfying \[ 56x \plus{} 33y \equal{} \frac{\minus{}y}{x^2\plus{}y^2}, \qquad \text{and} \qquad 33x\minus{}56y \equal{} \frac{x}{x^2\plus{}y^2}.
\]Determine the value of $ |x| \plus{} |y|$.
2010 IMO Shortlist, 6
The rows and columns of a $2^n \times 2^n$ table are numbered from $0$ to $2^{n}-1.$ The cells of the table have been coloured with the following property being satisfied: for each $0 \leq i,j \leq 2^n - 1,$ the $j$-th cell in the $i$-th row and the $(i+j)$-th cell in the $j$-th row have the same colour. (The indices of the cells in a row are considered modulo $2^n$.) Prove that the maximal possible number of colours is $2^n$.
[i]Proposed by Hossein Dabirian, Sepehr Ghazi-nezami, Iran[/i]