Found problems: 76
2006 China Team Selection Test, 2
Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.
2005 Bosnia and Herzegovina Team Selection Test, 3
Let $n$ be a positive integer such that $n \geq 2$. Let $x_1, x_2,..., x_n$ be $n$ distinct positive integers and $S_i$ sum of all numbers between them except $x_i$ for $i=1,2,...,n$. Let $f(x_1,x_2,...,x_n)=\frac{GCD(x_1,S_1)+GCD(x_2,S_2)+...+GCD(x_n,S_n)}{x_1+x_2+...+x_n}.$
Determine maximal value of $f(x_1,x_2,...,x_n)$, while $(x_1,x_2,...,x_n)$ is an element of set which consists from all $n$-tuples of distinct positive integers.
1999 IMO, 2
Let $n \geq 2$ be a fixed integer. Find the least constant $C$ such the inequality
\[\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C
\left(\sum_{i}x_{i} \right)^4\]
holds for any $x_{1}, \ldots ,x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant $C$, characterize the instances of equality.
2015 Romania Team Selection Test, 5
Given an integer $N \geq 4$, determine the largest value the sum
$$\sum_{i=1}^{\left \lfloor{\frac{k}{2}}\right \rfloor+1}\left( \left \lfloor{\frac{n_i}{2}}\right \rfloor+1\right)$$
may achieve, where $k, n_1, \ldots, n_k$ run through the integers subject to $k \geq 3$, $n_1 \geq \ldots\geq n_k\geq 1$ and $n_1 + \ldots + n_k = N$.
1999 IMO Shortlist, 1
Let $n \geq 2$ be a fixed integer. Find the least constant $C$ such the inequality
\[\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C
\left(\sum_{i}x_{i} \right)^4\]
holds for any $x_{1}, \ldots ,x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant $C$, characterize the instances of equality.
2018 Bosnia and Herzegovina EGMO TST, 4
It is given positive integer $n$. Let $a_1, a_2,..., a_n$ be positive integers with sum $2S$, $S \in \mathbb{N}$. Positive integer $k$ is called separator if you can pick $k$ different indices $i_1, i_2,...,i_k$ from set $\{1,2,...,n\}$ such that $a_{i_1}+a_{i_2}+...+a_{i_k}=S$. Find, in terms of $n$, maximum number of separators
1989 IMO Longlists, 74
For points $ A_1, \ldots ,A_5$ on the sphere of radius 1, what is the maximum value that $ min_{1 \leq i,j \leq 5} A_iA_j$ can take? Determine all configurations for which this maximum is attained. (Or: determine the diameter of any set $ \{A_1, \ldots ,A_5\}$ for which this maximum is attained.)
1976 IMO, 1
Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is $1976.$
2016 Iran Team Selection Test, 4
Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.
1966 IMO Longlists, 44
What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$
1967 IMO Shortlist, 3
The $n$ points $P_1,P_2, \ldots, P_n$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance $D_n$ between any two of these points has its largest possible value $D_n.$ Calculate $D_n$ for $n = 2$ to 7. and justify your answer.
1982 IMO Longlists, 4
[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes
\[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\]
[b](b)[/b] Find the rearrangement that minimizes $Q.$
1982 IMO Longlists, 17
[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes
\[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\]
[b](b)[/b] Find the rearrangement that minimizes $Q.$
2023 Indonesia Regional, 3
Find the maximum value of an integer $B$ such that for every 9 distinct natural number with the sum of $2023$, there must exist a sum of 4 of the number that is greater than or equal to $B$
1977 IMO, 2
In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.
2024 Indonesia TST, C
Given a sequence of integers $A_1,A_2,\cdots A_{99}$ such that for every sub-sequence that contains $m$ consecutive elements, there exist not more than $max\{ \frac{m}{3} ,1\}$ odd integers. Let $S=\{ (i,j) \ | i<j \}$ such that $A_i$ is even and $A_j$ is odd. Find $max\{ |S|\}$.
1982 IMO Shortlist, 11
[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes
\[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\]
[b](b)[/b] Find the rearrangement that minimizes $Q.$
1979 IMO Shortlist, 5
Let $n \geq 2$ be an integer. Find the maximal cardinality of a set $M$ of pairs $(j, k)$ of integers, $1 \leq j < k \leq n$, with the following property: If $(j, k) \in M$, then $(k,m) \not \in M$ for any $m.$
1989 IMO Shortlist, 24
For points $ A_1, \ldots ,A_5$ on the sphere of radius 1, what is the maximum value that $ min_{1 \leq i,j \leq 5} A_iA_j$ can take? Determine all configurations for which this maximum is attained. (Or: determine the diameter of any set $ \{A_1, \ldots ,A_5\}$ for which this maximum is attained.)
1979 IMO, 1
We consider a point $P$ in a plane $p$ and a point $Q \not\in p$. Determine all the points $R$ from $p$ for which \[ \frac{QP+PR}{QR} \] is maximum.
1966 IMO Longlists, 45
An alphabet consists of $n$ letters. What is the maximal length of a word if we know that any two consecutive letters $a,b$ of the word are different and that the word cannot be reduced to a word of the kind $abab$ with $a\neq b$ by removing letters.
1972 IMO Longlists, 11
The least number is $m$ and the greatest number is $M$ among $ a_1 ,a_2 ,\ldots,a_n$ satisfying $ a_1 \plus{}a_2 \plus{}...\plus{}a_n \equal{}0$. Prove that
\[ a_1^2 \plus{}\cdots \plus{}a_n^2 \le\minus{}nmM\]
2015 Harvard-MIT Mathematics Tournament, 5
Let $a,b,c$ be positive real numbers such that $a+b+c=10$ and $ab+bc+ca=25$. Let $m=\min\{ab,bc,ca\}$. Find the largest possible value of $m$.
1985 Austrian-Polish Competition, 7
Find an upper bound for the ratio
$$\frac{x_1x_2+2x_2x_3+x_3x_4}{x_1^2+x_2^2+x_3^2+x_4^2}$$
over all quadruples of real numbers $(x_1,x_2,x_3,x_4)\neq (0,0,0,0)$.
[i]Note.[/i] The smaller the bound, the better the solution.
1989 IMO Shortlist, 26
Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which
\[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\]
where $ x_0, x_1, \ldots , x_n$ are real variables.