This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2009 IMC, 4

Let $p$ be a prime number and $\mathbf{W}\subseteq \mathbb{F}_p[x]$ be the smallest set satisfying the following : [list] (a) $x+1\in \mathbf{W}$ and $x^{p-2}+x^{p-3}+\cdots +x^2+2x+1\in \mathbf{W}$ (b) For $\gamma_1,\gamma_2$ in $\mathbf{W}$, we also have $\gamma(x)\in \mathbf{W}$, where $\gamma(x)$ is the remainder $(\gamma_1\circ \gamma_2)(x)\pmod {x^p-x}$.[/list] How many polynomials are in $\mathbf{W}?$

2012 Iran MO (3rd Round), 1

Suppose $0<m_1<...<m_n$ and $m_i \equiv i (\mod 2)$. Prove that the following polynomial has at most $n$ real roots. ($\forall 1\le i \le n: a_i \in \mathbb R$). \[a_0+a_1x^{m_1}+a_2x^{m_2}+...+a_nx^{m_n}.\]

2009 JBMO TST - Macedonia, 1

On a board, the numbers from 1 to 2009 are written. A couple of them are erased and instead of them, on the board is written the remainder of the sum of the erased numbers divided by 13. After a couple of repetition of this erasing, only 3 numbers are left, of which two are 9 and 999. Find the third number.

2012 ELMO Shortlist, 7

A diabolical combination lock has $n$ dials (each with $c$ possible states), where $n,c>1$. The dials are initially set to states $d_1, d_2, \ldots, d_n$, where $0\le d_i\le c-1$ for each $1\le i\le n$. Unfortunately, the actual states of the dials (the $d_i$'s) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_i$ ($0\le c_i\le c-1$), so that every dial is now in a state $d_i '\equiv d_i+c_i \pmod{c}$ with $0\le d_i ' \le c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer $k$ and cyclically shifts the $d_i$'s by $k$ (so that for every $i$, $d_i$ is replaced by $d_{i-k}$, where indices are taken modulo $n$). Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of $k$ (which may vary from turn to turn), if and only if $n$ and $c$ are powers of the same prime. [i]Bobby Shen.[/i]

2013 ELMO Problems, 5

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]

1978 IMO Shortlist, 15

Let $p$ be a prime and $A = \{a_1, \ldots , a_{p-1} \}$ an arbitrary subset of the set of natural numbers such that none of its elements is divisible by $p$. Let us define a mapping $f$ from $\mathcal P(A)$ (the set of all subsets of $A$) to the set $P = \{0, 1, \ldots, p - 1\}$ in the following way: $(i)$ if $B = \{a_{i_{1}}, \ldots , a_{i_{k}} \} \subset A$ and $\sum_{j=1}^k a_{i_{j}} \equiv n \pmod p$, then $f(B) = n,$ $(ii)$ $f(\emptyset) = 0$, $\emptyset$ being the empty set. Prove that for each $n \in P$ there exists $B \subset A$ such that $f(B) = n.$

2012 Morocco TST, 1

Find all positive integers $n, k$ such that $(n-1)!=n^{k}-1$.

2009 China Western Mathematical Olympiad, 4

Prove that for every given positive integer $k$, there exist infinitely many $n$, such that $2^{n}+3^{n}-1, 2^{n}+3^{n}-2,\ldots, 2^{n}+3^{n}-k$ are all composite numbers.

2002 Stanford Mathematics Tournament, 6

How many integers $x$, from $10$ to $99$ inclusive, have the property that the remainder of $x^2$ divided by $100$ is equal to the square of the units digit of $x$?

2011 All-Russian Olympiad, 3

For positive integers $a>b>1$, define \[x_n = \frac {a^n-1}{b^n-1}\] Find the least $d$ such that for any $a,b$, the sequence $x_n$ does not contain $d$ consecutive prime numbers. [i]V. Senderov[/i]

2012 BMT Spring, 8

You are tossing an unbiased coin. The last $ 28 $ consecutive flips have all resulted in heads. Let $ x $ be the expected number of additional tosses you must make before you get $ 60 $ consecutive heads. Find the sum of all distinct prime factors in $ x $.

2007 China Team Selection Test, 1

Find all the pairs of positive integers $ (a,b)$ such that $ a^2 \plus{} b \minus{} 1$ is a power of prime number $ ; a^2 \plus{} b \plus{} 1$ can divide $ b^2 \minus{} a^3 \minus{} 1,$ but it can't divide $ (a \plus{} b \minus{} 1)^2.$

2004 IMO Shortlist, 2

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

1971 AMC 12/AHSME, 11

The numeral $47$ in base $a$ represents the same number as $74$ in base $b$. Assuming that both bases are positive integers, the least possible value of $a+b$ written as a Roman numeral, is $\textbf{(A) }\mathrm{XIII}\qquad\textbf{(B) }\mathrm{XV}\qquad\textbf{(C) }\mathrm{XXI}\qquad\textbf{(D) }\mathrm{XXIV}\qquad \textbf{(E) }\mathrm{XVI}$

2011 Iran MO (3rd Round), 2

Let $n$ and $k$ be two natural numbers such that $k$ is even and for each prime $p$ if $p|n$ then $p-1|k$. let $\{a_1,....,a_{\phi(n)}\}$ be all the numbers coprime to $n$. What's the remainder of the number $a_1^k+.....+a_{\phi(n)}^k$ when it's divided by $n$? [i]proposed by Yahya Motevassel[/i]

2009 Indonesia TST, 1

Prove that for all odd $ n > 1$, we have $ 8n \plus{} 4|C^{4n}_{2n}$.

1972 Canada National Olympiad, 5

Prove that the equation $x^3+11^3=y^3$ has no solution in positive integers $x$ and $y$.

1995 APMO, 5

Find the minimum positive integer $k$ such that there exists a function $f$ from the set $\Bbb{Z}$ of all integers to $\{1, 2, \ldots k\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in \{5, 7, 12\}$.

2014 CentroAmerican, 3

A positive integer $n$ is [i]funny[/i] if for all positive divisors $d$ of $n$, $d+2$ is a prime number. Find all funny numbers with the largest possible number of divisors.

2014 Postal Coaching, 3

Find all ordered triplets of positive integers $(a,\ b,\ c)$ such that $2^a+3^b+1=6^c$.

1994 Baltic Way, 9

Find all pairs of positive integers $(a,b)$ such that $2^a+3^b$ is the square of an integer.

2005 ITAMO, 2

Let $h$ be a positive integer. The sequence $a_n$ is defined by $a_0 = 1$ and \[a_{n+1} = \{\begin{array}{c} \frac{a_n}{2} \text{ if } a_n \text{ is even }\\\\a_n+h \text{ otherwise }.\end{array}\] For example, $h = 27$ yields $a_1=28, a_2 = 14, a_3 = 7, a_4 = 34$ etc. For which $h$ is there an $n > 0$ with $a_n = 1$?

2012 ITAMO, 2

Determine all positive integers that are equal to $300$ times the sum of their digits.

1987 Vietnam National Olympiad, 2

Sequences $ (x_n)$ and $ (y_n)$ are constructed as follows: $ x_0 \equal{} 365$, $ x_{n\plus{}1} \equal{} x_n\left(x^{1986} \plus{} 1\right) \plus{} 1622$, and $ y_0 \equal{} 16$, $ y_{n\plus{}1} \equal{} y_n\left(y^3 \plus{} 1\right) \minus{} 1952$, for all $ n \ge 0$. Prove that $ \left|x_n\minus{} y_k\right|\neq 0$ for any positive integers $ n$, $ k$.

1986 Traian Lălescu, 1.1

Show that the number $ 7^{100}-3^{100} $ has $ 85 $ digits and find its last $ 4 $ ones.