Found problems: 2008
2009 Turkey MO (2nd round), 1
Find all prime numbers $p$ for which $p^3-4p+9$ is a perfect square.
2025 Vietnam National Olympiad, 2
For each non-negative integer $n$, let $u_n = \left( 2+\sqrt{5} \right)^n + \left( 2-\sqrt{5} \right)^n$.
a) Prove that $u_n$ is a positive integer for all $n \geq 0$. When $n$ changes, what is the largest possible remainder when $u_n$ is divided by $24$?
b) Find all pairs of positive integers $(a, b)$ such that $a, b < 500$ and for all odd positive integers $n$, $u_n \equiv a^n - b^n \pmod {1111}$.
2000 CentroAmerican, 2
Determine all positive integers $ n$ such that it is possible to tile a $ 15 \times n$ board with pieces shaped like this:
[asy]size(100); draw((0,0)--(3,0)); draw((0,1)--(3,1)); draw((0,2)--(1,2)); draw((2,2)--(3,2)); draw((0,0)--(0,2)); draw((1,0)--(1,2)); draw((2,0)--(2,2)); draw((3,0)--(3,2)); draw((5,0)--(6,0)); draw((4,1)--(7,1)); draw((4,2)--(7,2)); draw((5,3)--(6,3)); draw((4,1)--(4,2)); draw((5,0)--(5,3)); draw((6,0)--(6,3)); draw((7,1)--(7,2));[/asy]
2006 India IMO Training Camp, 3
There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$.
[i]Proposed by Dusan Dukic, Serbia[/i]
2013 ELMO Shortlist, 5
Let $m_1,m_2,...,m_{2013} > 1$ be 2013 pairwise relatively prime positive integers and $A_1,A_2,...,A_{2013}$ be 2013 (possibly empty) sets with $A_i\subseteq \{1,2,...,m_i-1\}$ for $i=1,2,...,2013$. Prove that there is a positive integer $N$ such that
\[ N \le \left( 2\left\lvert A_1 \right\rvert + 1 \right)\left( 2\left\lvert A_2 \right\rvert + 1 \right)\cdots\left( 2\left\lvert A_{2013} \right\rvert + 1 \right) \]
and for each $i = 1, 2, ..., 2013$, there does [i]not[/i] exist $a \in A_i$ such that $m_i$ divides $N-a$.
[i]Proposed by Victor Wang[/i]
1998 USAMO, 5
Prove that for each $n\geq 2$, there is a set $S$ of $n$ integers such that $(a-b)^2$ divides $ab$ for every distinct $a,b\in S$.
2006 Irish Math Olympiad, 4
Let $n$ be a positive integer.
Find the greatest common divisor of the numbers $\binom{2n}{1},\binom{2n}{3},\binom{2n}{5},...,\binom{2n}{2n-1}$.
2013 ELMO Shortlist, 2
For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$?
[i]Proposed by Andre Arslan[/i]
2006 Alexandru Myller, 1
For an odd prime $ p, $ show that $ \sum_{k=1}^{p-1} \frac{k^p-k}{p}\equiv \frac{1+p}{2}\pmod p . $
1958 AMC 12/AHSME, 32
With $ \$1000$ a rancher is to buy steers at $ \$25$ each and cows at $ \$26$ each. If the number of steers $ s$ and the number of cows $ c$ are both positive integers, then:
$ \textbf{(A)}\ \text{this problem has no solution}\qquad\\
\textbf{(B)}\ \text{there are two solutions with }{s}\text{ exceeding }{c}\qquad \\
\textbf{(C)}\ \text{there are two solutions with }{c}\text{ exceeding }{s}\qquad \\
\textbf{(D)}\ \text{there is one solution with }{s}\text{ exceeding }{c}\qquad \\
\textbf{(E)}\ \text{there is one solution with }{c}\text{ exceeding }{s}$
2013 National Olympiad First Round, 34
How many triples of positive integers $(a,b,c)$ are there such that $a!+b^3 = 18+c^3$?
$
\textbf{(A)}\ 4
\qquad\textbf{(B)}\ 3
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 1
\qquad\textbf{(E)}\ 0
$
2008 Gheorghe Vranceanu, 4
Find the largest natural number $ k $ which has the property that there is a partition of the natural numbers $ \bigcup_{1\le j\le k} V_j, $ an index $ i\in\{ 1,\ldots ,k \} $ and three natural numbers $ a,b,c\in V_i, $ satisfying $ a+2b=4c. $
2008 IMC, 1
Let $ n, k$ be positive integers and suppose that the polynomial $ x^{2k}\minus{}x^k\plus{}1$ divides $ x^{2n}\plus{}x^n\plus{}1$. Prove that $ x^{2k}\plus{}x^k\plus{}1$ divides $ x^{2n}\plus{}x^n\plus{}1$.
2012 Romanian Masters In Mathematics, 4
Prove that there are infinitely many positive integers $n$ such that $2^{2^n+1}+1$ is divisible by $n$ but $2^n+1$ is not.
[i](Russia) Valery Senderov[/i]
2012 USAMO, 4
Find all functions $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (where $\mathbb{Z}^+$ is the set of positive integers) such that $f(n!) = f(n)!$ for all positive integers $n$ and such that $m-n$ divides $f(m) - f(n)$ for all distinct positive integers $m, n$.
1997 All-Russian Olympiad, 1
Find all integer solutions of the equation $(x^2 - y^2)^2 = 1 + 16y$.
[i]M. Sonkin[/i]
PEN N Problems, 8
An integer sequence $\{a_{n}\}_{n \ge 1}$ is given such that \[2^{n}=\sum^{}_{d \vert n}a_{d}\] for all $n \in \mathbb{N}$. Show that $a_{n}$ is divisible by $n$ for all $n \in \mathbb{N}$.
2013 China National Olympiad, 3
Let $m,n$ be positive integers. Find the minimum positive integer $N$ which satisfies the following condition. If there exists a set $S$ of integers that contains a complete residue system module $m$ such that $| S | = N$, then there exists a nonempty set $A \subseteq S$ so that $n\mid {\sum\limits_{x \in A} x }$.
2007 Kazakhstan National Olympiad, 3
Let $p$ be a prime such that $2^{p-1}\equiv 1 \pmod{p^2}$. Show that $(p-1)(p!+2^n)$ has at least three distinct prime divisors for each $n\in \mathbb{N}$ .
2014 Czech-Polish-Slovak Match, 5
Let all positive integers $n$ satisfy the following condition:
for each non-negative integers $k, m$ with $k + m \le n$,
the numbers $\binom{n-k}{m}$ and $\binom{n-m}{k}$ leave the same remainder when divided by $2$.
(Poland)
PS. The translation was done using Google translate and in case it is not right, there is the original text in Slovak
2014 Contests, 2
A pair of positive integers $(a,b)$ is called [i]charrua[/i] if there is a positive integer $c$ such that $a+b+c$ and $a\times b\times c$ are both square numbers; if there is no such number $c$, then the pair is called [i]non-charrua[/i].
a) Prove that there are infinite [i]non-charrua[/i] pairs.
b) Prove that there are infinite positive integers $n$ such that $(2,n)$ is [i]charrua[/i].
2009 China Girls Math Olympiad, 8
For a positive integer $ n,$ $ a_{n}\equal{}n\sqrt{5}\minus{} \lfloor n\sqrt{5}\rfloor$. Compute the maximum value and the minimum value of $ a_{1},a_{2},\ldots ,a_{2009}.$
2014 USAMTS Problems, 5:
Find the smallest positive integer $n$ that satisfies the following:
We can color each positive integer with one of $n$ colors such that the equation $w + 6x = 2y + 3z$ has no solutions in positive integers with all of $w, x, y$ and $z$ having the same color. (Note that $w, x, y$ and $z$ need not be distinct.)
2003 Tournament Of Towns, 5
Prior to the game John selects an integer greater than $100$.
Then Mary calls out an integer $d$ greater than $1$. If John's integer is divisible by $d$, then Mary wins. Otherwise, John subtracts $d$ from his number and the game continues (with the new number). Mary is not allowed to call out any number twice. When John's number becomes negative, Mary loses. Does Mary have a winning strategy?
2012 AMC 10, 20
Bernado and Silvia play the following game. An integer between 0 and 999, inclusive, is selected and given to Bernado. Whenever Bernado receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds 50 to it and passes the result to Bernado. The winner is the last person who produces a number less than 1000. Let $N$ be the smallest initial number that results in a win for Bernado. What is the sum of the digits of $N$?
$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$