This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2006 Sharygin Geometry Olympiad, 23

$ABCD$ is a convex quadrangle, $G$ is its center of gravity as a homogeneous plate (i.e., the intersection point of two lines, each of which connects the centroids of triangles having a common diagonal). a) Suppose that around $ABCD$ we can circumscribe a circle centered on $O$. We define $H$ similarly to $G$, taking orthocenters instead of centroids. Then the points of $H, G, O$ lie on the same line and $HG: GO = 2: 1$. b) Suppose that in $ABCD$ we can inscribe a circle centered on $I$. The Nagel point N of the circumscribed quadrangle is the intersection point of two lines, each of which passes through points on opposite sides of the quadrangle that are symmetric to the tangent points of the inscribed circle relative to the midpoints of the sides. (These lines divide the perimeter of the quadrangle in half). Then $N, G, I$ lie on one straight line, with $NG: GI = 2: 1$.

2016 Sharygin Geometry Olympiad, P15

Let $O, M, N$ be the circumcenter, the centroid and the Nagel point of a triangle. Prove that angle $MON$ is right if and only if one of the triangle’s angles is equal to $60^o$.

Revenge EL(S)MO 2024, 7

A scalene triangle $ABC$ was drawn, and Elmo marked its incenter $I$, Feuerbach point $X$, and Nagel point $N$. Sadly, after taking the abcdEfghijkLMnOpqrstuvwxyz, Elmo lost the triangle $ABC$. Can Elmo use only a ruler and compass to reconstruct the triangle? Proposed by [i]Karn Chutinan[/i]