This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2007 Gheorghe Vranceanu, 4

Let $ F $ be the primitive of a continuous function $ f:\mathbb{R}\longrightarrow (0,\infty ), $ with $ F(0)=0. $ Determine for which values of $ \lambda \in (0,1) $ the function $ \left( F^{-1}\circ \lambda F \right)/\text{id.} $ has limit at $ 0, $ and calculate it.

2006 Cezar Ivănescu, 3

[b]a)[/b] Let $ h:\mathbb{R}\longrightarrow\mathbb{R} $ he a function that admits a primitive $ H $ such that the function $ h/H $ is constant. Prove that there is a real number $ \gamma $ such that $ h(x)=\gamma\cdot\exp \left( x\cdot\frac{h}{H} (x) \right) , $ for any real number $ x. $ [b]b)[/b] Find the functions $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ that admit the primitives $ F,G, $ respectively, that satisfy $ f=\frac{G+g}{2},g=\frac{F+f}{2} $ and $ f(0)=g(0)=0. $

2005 Gheorghe Vranceanu, 3

Let be a continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having a positive period $ T. $ Prove that: $$ \lim_{n\to\infty } e^{-nT}\int_0^{nT} e^tf(t)dt=\frac{1}{e^T-1}\int_0^T e^tf(t)dt $$