This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1976 IMO Longlists, 47

Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.

2019 Durer Math Competition Finals, 7

Find the smallest positive integer $n$ with the following property: if we write down all positive integers from $1$ to $10^n$ and add together the reciprocals of every non-zero digit written down, we obtain an integer.

2002 HKIMO Preliminary Selection Contest, 11

Find the 2002nd positive integer that is not the difference of two square integers

2019 Philippine TST, 1

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2020-IMOC, N3

$\textbf{N3:}$ For any positive integer $n$, define $rad(n)$ to be the product of all prime divisors of $n$ (without multiplicities), and in particular $rad(1)=1$. Consider an infinite sequence of positive integers $\{a_n\}_{n=1}^{\infty}$ satisfying that \begin{align*} a_{n+1} = a_n + rad(a_n), \: \forall n \in \mathbb{N} \end{align*} Show that there exist positive integers $t,s$ such that $a_t$ is the product of the $s$ smallest primes. [i]Proposed by ltf0501[/i]

2009 Danube Mathematical Competition, 4

Let be $ a,b,c $ positive integers.Prove that $ |a-b\sqrt{c}|<\frac{1}{2b} $ is true if and only if $ |a^{2}-b^{2}c|<\sqrt{c} $.

2024 Brazil EGMO TST, 4

The infinite sequence \( a_1, a_2, \ldots \) is defined by \( a_1 = 1 \) and, for each \( n \geq 1 \), the number \( a_{n+1} \) is the smallest positive integer greater than \( a_n \) that has the following property: for each \( k \in \{1, 2, \ldots, n\} \), the number \( a_{n+1} + a_k \) is not a perfect square. Prove that, for all \( n \), it holds that \( a_n \leq (n - 1)^2 + 1 \).

2019 Peru Cono Sur TST, P1

Find all a positive integers $a$ and $b$, such that $$\frac{a^b+b^a}{a^a-b^b}$$ is an integer

2002 Rioplatense Mathematical Olympiad, Level 3, 2

Let $\lambda$ be a real number such that the inequality $0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}$ holds for an infinite number of pairs $ (a, b)$ of positive integers. Prove that $\lambda \geq 5 $.

1996 Portugal MO, 4

Have you ever found it strange that “almost the same” numbers can look very different? For example, in the decimal system $29$ and $30$ only differ by one unit but do not contain any common digits. The ALPHABETA numbering system uses only the digits$ 0$ and $1$ and avoids this situation: [img]https://cdn.artofproblemsolving.com/attachments/d/f/dcdf284b3baeea8775de56ece091c80d3449a8.png[/img] In it, the rule for constructing the successor of a number is as follows: without repeating a previous number in the list, change the digit as far to the right as possible, otherwise a 1 is placed to the left. (a) What number in the decimal system is represented in the ALPHABETA code by the number $111111$? (b) What is the next number in this code? (c) Describe an algorithm to find, given any number in the ALPHABETA code, the next number in this code.

EMCC Team Rounds, 2016

[b]p1.[/b] Lisa is playing the piano at a tempo of $80$ beats per minute. If four beats make one measure of her rhythm, how many seconds are in one measure? [b]p2.[/b] Compute the smallest integer $n > 1$ whose base-$2$ and base-$3$ representations both do not contain the digit $0$. [b]p3.[/b] In a room of $24$ people, $5/6$ of the people are old, and $5/8$ of the people are male. At least how many people are both old and male? [b]p4.[/b] Juan chooses a random even integer from $1$ to $15$ inclusive, and Gina chooses a random odd integer from $1$ to $15$ inclusive. What is the probability that Juan’s number is larger than Gina’s number? (They choose all possible integers with equal probability.) [b]p5.[/b] Set $S$ consists of all positive integers less than or equal to $ 2016$. Let $A$ be the subset of $S$ consisting of all multiples of $6$. Let $B$ be the subset of $S$ consisting of all multiples of $7$. Compute the ratio of the number of positive integers in $A$ but not $B$ to the number of integers in $B$ but not $A$. [b]p6.[/b] Three peas form a unit equilateral triangle on a flat table. Sebastian moves one of the peas a distance $d$ along the table to form a right triangle. Determine the minimum possible value of $d$. [b]p7.[/b] Oumar is four times as old as Marta. In $m$ years, Oumar will be three times as old as Marta will be. In another $n$ years after that, Oumar will be twice as old as Marta will be. Compute the ratio $m/n$. [b]p8.[/b] Compute the area of the smallest square in which one can inscribe two non-overlapping equilateral triangles with side length $ 1$. [b]p9.[/b] Teemu, Marcus, and Sander are signing documents. If they all work together, they would finish in $6$ hours. If only Teemu and Sander work together, the work would be finished in 8 hours. If only Marcus and Sander work together, the work would be finished in $10$ hours. How many hours would Sander take to finish signing if he worked alone? [b]p10.[/b]Triangle $ABC$ has a right angle at $B$. A circle centered at $B$ with radius $BA$ intersects side $AC$ at a point $D$ different from $A$. Given that $AD = 20$ and $DC = 16$, find the length of $BA$. [b]p11.[/b] A regular hexagon $H$ with side length $20$ is divided completely into equilateral triangles with side length $ 1$. How many regular hexagons with sides parallel to the sides of $H$ are formed by lines in the grid? [b]p12[/b]. In convex pentagon $PEARL$, quadrilateral $PERL$ is a trapezoid with side $PL$ parallel to side $ER$. The areas of triangle $ERA$, triangle $LAP$, and trapezoid $PERL$ are all equal. Compute the ratio $\frac{PL}{ER}$. [b]p13.[/b] Let $m$ and $n$ be positive integers with $m < n$. The first two digits after the decimal point in the decimal representation of the fraction $m/n$ are $74$. What is the smallest possible value of $n$? [b]p14.[/b] Define functions $f(x, y) = \frac{x + y}{2} - \sqrt{xy}$ and $g(x, y) = \frac{x + y}{2} + \sqrt{xy}$. Compute $g (g (f (1, 3), f (5, 7)), g (f (3, 5), f (7, 9)))$. [b]p15.[/b] Natalia plants two gardens in a $5 \times 5$ grid of points. Each garden is the interior of a rectangle with vertices on grid points and sides parallel to the sides of the grid. How many unordered pairs of two non-overlapping rectangles can Nataliia choose as gardens? (The two rectangles may share an edge or part of an edge but should not share an interior point.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Saudi Arabia BMO TST, 2

The base-$7$ representation of number $n$ is $\overline{abc}_{(7)}$, and the base-$9$ representation of number $n$ is $\overline{cba}_{(9)}$. What is the decimal (base-$10$) representation of $n$?

2025 CMIMC Algebra/NT, 8

Let $P(x)=x^4+20x^3+29x^2-666x+2025.$ It is known that $P(x)>0$ for every real $x.$ There is a root $r$ for $P$ in the first quadrant of the complex plane that can be expressed as $r=\frac{1}{2}(a+bi+\sqrt{c+di}),$ where $a,b,c,d$ are integers. Find $a+b+c+d.$

2010 Greece National Olympiad, 1

Solve in the integers the diophantine equation $$x^4-6x^2+1 = 7 \cdot 2^y.$$

2017 Taiwan TST Round 2, 4

Find all integer $c\in\{0,1,...,2016\}$ such that the number of $f:\mathbb{Z}\rightarrow\{0,1,...,2016\}$ which satisfy the following condition is minimal:\\ (1) $f$ has periodic $2017$\\ (2) $f(f(x)+f(y)+1)-f(f(x)+f(y))\equiv c\pmod{2017}$\\ Proposed by William Chao

1982 Poland - Second Round, 5

Let $ q $ be an even positive number. Prove that for every natural number $ n $ number $q^{(q+1)^n}+1$ is divisible by $ (q + 1)^{n+1} $ but not divisible by $ (q + 1)^{n+2} $.

2023 Serbia National Math Olympiad, 4

Given a positive integer $n$ and a prime $q$, prove that the number $n^q+(\frac{n-1}{2})^2$ can't be a power of $q$.

2010 Kyrgyzstan National Olympiad, 7

Find all natural triples $(a,b,c)$, such that: $a - )\,a \le b \le c$ $b - )\,(a,b,c) = 1$ $c - )\,\left. {{a^2}b} \right|{a^3} + {b^3} + {c^3}\,,\,\left. {{b^2}c} \right|{a^3} + {b^3} + {c^3}\,,\,\left. {{c^2}a} \right|{a^3} + {b^3} + {c^3}$.

1993 Mexico National Olympiad, 4

$f(n,k)$ is defined by (1) $f(n,0) = f(n,n) = 1$ and (2) $f(n,k) = f(n-1,k-1) + f(n-1,k)$ for $0 < k < n$. How many times do we need to use (2) to find $f(3991,1993)$?

2008 AIME Problems, 6

A triangular array of numbers has a first row consisting of the odd integers $ 1,3,5,\ldots,99$ in increasing order. Each row below the first has one fewer entry than the row above it, and the bottom row has a single entry. Each entry in any row after the top row equals the sum of the two entries diagonally above it in the row immediately above it. How many entries in the array are multiples of $ 67$? [asy]size(200); defaultpen(fontsize(10)); label("1", origin); label("3", (2,0)); label("5", (4,0)); label("$\cdots$", (6,0)); label("97", (8,0)); label("99", (10,0)); label("4", (1,-1)); label("8", (3,-1)); label("12", (5,-1)); label("196", (9,-1)); label(rotate(90)*"$\cdots$", (6,-2));[/asy]

1984 Poland - Second Round, 1

For a given natural number $ n $, find the number of solutions to the equation $ \sqrt{x} + \sqrt{y} = n $ in natural numbers $ x, y $.

2016 Argentina National Olympiad Level 2, 5

For each pair $a, \,b$ of coprime natural numbers, let $d_{a,\,b}$ be the greatest common divisor of $51a + b$ and $a + 51b$. Find the maximum possible value of $d_{a,\,b}$.

1987 Czech and Slovak Olympiad III A, 4

Given an integer $n\ge3$ consider positive integers $x_1,\ldots,x_n$ such that $x_1<x_2<\cdots<x_n<2x_1$. If $p$ is a prime and $r$ is a positive integer such that $p^r$ divides the product $x_1\cdots x_n$, prove that $$\frac{x_1\cdots x_n}{p^r}>n!.$$

2021 European Mathematical Cup, 3

Let $\mathbb{N}$ denote the set of all positive integers. Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that $$x^2-y^2+2y(f(x)+f(y))$$ is a square of an integer for all positive integers $x$ and $y$.

2008 Mathcenter Contest, 6

Find the total number of integer solutions of the equation $$x^5-y^2=4$$ [i](Erken)[/i]