This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2010 Brazil Team Selection Test, 2

Let $k > 1$ be a fixed integer. Prove that there are infinite positive integers $n$ such that $$ lcm \, (n, n + 1, n + 2, ... , n + k) > lcm \, (n + 1, n + 2, n + 3,... , n + k + 1).$$

2008 Mid-Michigan MO, 7-9

[b]p1.[/b] Jack made $3$ quarts of fruit drink from orange and apple juice. His drink contains $45\%$ of orange juice. Nick prefers more orange juice in the drink. How much orange juice should he add to the drink to obtain a drink composed of $60\%$ of orange juice? [b]p2.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the big square $ABCD$ is $40$ cm. [img]https://cdn.artofproblemsolving.com/attachments/8/c/d54925cba07f63ec8578048f46e1e730cb8df3.png[/img] [b]p3.[/b] For one particular number $a > 0$ the function f satisfies the equality $f(x + a) =\frac{1 + f(x)}{1 - f(x)}$ for all $x$. Show that $f$ is a periodic function. (A function $f$ is periodic with the period $T$ if $f(x + T) = f(x)$ for any $x$.) [b]p4.[/b] If $a, b, c, x, y, z$ are numbers so that $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}= 1$ and $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}= 0$. Show that $\frac{x^2}{a^2} +\frac{y^2}{b^2} +\frac{z^2}{c^2} = 1$ [b]p5.[/b] Is it possible that a four-digit number $AABB$ is a perfect square? (Same letters denote the same digits). [b]p6.[/b] A finite number of arcs of a circle are painted black (see figure). The total length of these arcs is less than $\frac15$ of the circumference. Show that it is possible to inscribe a square in the circle so that all vertices of the square are in the unpainted portion of the circle. [img]https://cdn.artofproblemsolving.com/attachments/2/c/bdfa61917a47f3de5dd3684627792a9ebf05d5.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 USAMTS Problems, 3

Let $f(x) = x-\tfrac1{x}$, and defi ne $f^1(x) = f(x)$ and $f^n(x) = f(f^{n-1}(x))$ for $n\ge2$. For each $n$, there is a minimal degree $d_n$ such that there exist polynomials $p$ and $q$ with $f^n(x) = \tfrac{p(x)}{q(x)}$ and the degree of $q$ is equal to $d_n$. Find $d_n$.

2022 Purple Comet Problems, 13

Each different letter in the following addition represents a different decimal digit. The sum is a six-digit integer whose digits are all equal. $$\begin{tabular}{ccccccc} & P & U & R & P & L & E\\ + & & C & O & M & E & T \\ \hline \\ \end{tabular}$$ Find the greatest possible value that the five-digit number $COMET$ could represent.

EMCC Speed Rounds, 2013

[i]20 problems for 20 minutes.[/i] [b]p1.[/b] Determine how many digits the number $10^{10}$ has. [b]p2.[/b] Let $ABC$ be a triangle with $\angle ABC = 60^o$ and $\angle BCA = 70^o$. Compute $\angle CAB$ in degrees. [b]p3.[/b] Given that $x : y = 2012 : 2$ and $y : z = 1 : 2013$, compute $x : z$. Express your answer as a common fraction. [b]p4.[/b] Determine the smallest perfect square greater than $2400$. [b]p5.[/b] At $12:34$ and $12:43$, the time contains four consecutive digits. Find the next time after 12:43 that the time contains four consecutive digits on a 24-hour digital clock. [b]p6.[/b] Given that $ \sqrt{3^a \cdot 9^a \cdot 3^a} = 81^2$, compute $a$. [b]p7.[/b] Find the number of positive integers less than $8888$ that have a tens digit of $4$ and a units digit of $2$. [b]p8.[/b] Find the sum of the distinct prime divisors of $1 + 2012 + 2013 + 2011 \cdot 2013$. [b]p9.[/b] Albert wants to make $2\times 3$ wallet sized prints for his grandmother. Find the maximum possible number of prints Albert can make using one $4 \times 7$ sheet of paper. [b]p10.[/b] Let $ABC$ be an equilateral triangle, and let $D$ be a point inside $ABC$. Let $E$ be a point such that $ADE$ is an equilateral triangle and suppose that segments $DE$ and $AB$ intersect at point $F$. Given that $\angle CAD = 15^o$, compute $\angle DFB$ in degrees. [b]p11.[/b] A palindrome is a number that reads the same forwards and backwards; for example, $1221$ is a palindrome. An almost-palindrome is a number that is not a palindrome but whose first and last digits are equal; for example, $1231$ and $1311$ are an almost-palindromes, but $1221$ is not. Compute the number of $4$-digit almost-palindromes. [b]p12.[/b] Determine the smallest positive integer $n$ such that the sum of the digits of $11^n$ is not $2^n$. [b]p13.[/b] Determine the minimum number of breaks needed to divide an $8\times 4$ bar of chocolate into $1\times 1 $pieces. (When a bar is broken into pieces, it is permitted to rotate some of the pieces, stack some of the pieces, and break any set of pieces along a vertical plane simultaneously.) [b]p14.[/b] A particle starts moving on the number line at a time $t = 0$. Its position on the number line, as a function of time, is $$x = (t-2012)^2 -2012(t-2012)-2013.$$ Find the number of positive integer values of $t$ at which time the particle lies in the negative half of the number line (strictly to the left of $0$). [b]p15.[/b] Let $A$ be a vertex of a unit cube and let $B$,$C$, and $D$ be the vertices adjacent to A. The tetrahedron $ABCD$ is cut off the cube. Determine the surface area of the remaining solid. [b]p16.[/b] In equilateral triangle $ABC$, points $P$ and $R$ lie on segment $AB$, points $I$ and $M$ lie on segment $BC$, and points $E$ and $S$ lie on segment $CA$ such that $PRIMES$ is a equiangular hexagon. Given that $AB = 11$, $PS = 2$, $RI = 3$, and $ME = 5$, compute the area of hexagon $PRIMES$. [b]p17.[/b] Find the smallest odd positive integer with an odd number of positive integer factors, an odd number of distinct prime factors, and an odd number of perfect square factors. [b]p18.[/b] Fresh Mann thinks that the expressions $2\sqrt{x^2 -4} $and $2(\sqrt{x^2} -\sqrt4)$ are equivalent to each other, but the two expressions are not equal to each other for most real numbers $x$. Find all real numbers $x$ such that $2\sqrt{x^2 -4} = 2(\sqrt{x^2} -\sqrt4)$. [b]p19.[/b] Let $m$ be the positive integer such that a $3 \times 3$ chessboard can be tiled by at most $m$ pairwise incongruent rectangles with integer side lengths. If rotations and reflections of tilings are considered distinct, suppose that there are $n$ ways to tile the chessboard with $m$ pairwise incongruent rectangles with integer side lengths. Find the product $mn$. [b]p20.[/b] Let $ABC$ be a triangle with $AB = 4$, $BC = 5$, and $CA = 6$. A triangle $XY Z$ is said to be friendly if it intersects triangle $ABC$ and it is a translation of triangle $ABC$. Let $S$ be the set of points in the plane that are inside some friendly triangle. Compute the ratio of the area of $S$ to the area of triangle $ABC$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Iran MO (3rd Round), 28

Find all prime numbers $p$ such that $ p = m^2 + n^2$ and $p\mid m^3+n^3-4$.

2012 Argentina National Olympiad, 5

Given a finite sequence with terms in the set $A=\{0,1,…,121\}$ , it is allowed to replace each term by a number from the set $A$ so that like terms are replaced by like numbers, and different terms by different numbers. (Terms may remain without replacement.) The objective is to obtain, from a given sequence, through several such changes, a new sequence with sum divisible by $121$ . Show that it is possible to achieve the objective for every initial sequence. [hide=original wording]Dada una secuencia finita con términos en el conjunto A={0,1,…,121} , está permitido reemplazar cada término por un número del conjunto A de modo que términos iguales se reemplacen por números iguales, y términos distintos por números distintos. (Pueden quedar términos sin reemplazar.) El objetivo es obtener, a partir de una sucesión dada, mediante varios de tales cambios, una nueva sucesión con suma divisible por 121 . Demostrar que es posible lograr el objetivo para toda sucesión inicial.[/hide]

2018 Thailand Mathematical Olympiad, 5

Let a, b be positive integers such that $5 \nmid a, b$ and $5^5 \mid a^5+b^5$. What is the minimum possible value of $a + b$?

2001 China Team Selection Test, 1

For which integer \( h \), are there infinitely many positive integers \( n \) such that \( \lfloor \sqrt{h^2 + 1} \cdot n \rfloor \) is a perfect square? (Here \( \lfloor x \rfloor \) denotes the integer part of the real number \( x \)?

2020 AIME Problems, 12

Let $n$ be the least positive integer for which $149^n - 2^n$ is divisible by $3^3 \cdot 5^5 \cdot 7^7$. Find the number of positive divisors of $n$.

2016 PUMaC Number Theory A, 4

Compute the sum of the two smallest positive integers $b$ with the following property: there are at least ten integers $0 \le n < b$ such that $n^2$ and $n$ end in the same digit in base $b$.

2019 IFYM, Sozopol, 8

Solve the following equation in integers: $4n^4+7n^2+3n+6=m^3$.

2018 PUMaC Individual Finals A, 3

We say that the prime numbers $p_1,\dots,p_n$ construct the graph $G$ if we can assign to each vertex of $G$ a natural number whose prime divisors are among $p_1,\dots,p_n$ and there is an edge between two vertices in $G$ if and only if the numbers assigned to the two vertices have a common divisor greater than $1$. What is the minimal $n$ such that there exist prime numbers $p_1,\dots,p_n$ which construct any graph $G$ with $N$ vertices?

2010 Contests, 3

For $ n\in\mathbb{N}$, determine the number of natural solutions $ (a,b)$ such that \[ (4a\minus{}b)(4b\minus{}a)\equal{}2010^n\] holds.

2021 SAFEST Olympiad, 6

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: [list] [*] $(i)$ $f(n) \neq 0$ for at least one $n$; [*] $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; [*] $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$. [/list]

1990 IMO Shortlist, 28

Prove that on the coordinate plane it is impossible to draw a closed broken line such that [i](i)[/i] the coordinates of each vertex are rational; [i](ii)[/i] the length each of its edges is 1; [i](iii)[/i] the line has an odd number of vertices.

2005 Morocco National Olympiad, 2

Find all the positive integers $x,y,z$ satisfiing : $x^{2}+y^{2}+z^{2}=2xyz$

1997 VJIMC, Problem 1

Let $a$ be an odd positive integer. Prove that if $d$ divides $a^2+2$, then $d\equiv1\pmod8$ or $d\equiv3\pmod8$.

2014 Junior Balkan Team Selection Tests - Moldova, 8

The teacher wrote a non-zero natural number on the board. The teacher explained students that they can delete the number written on the board and can write a number instead naturally new, whenever they want, applying one of the following each time rules: 1) Instead of the current number $n$ write $3n + 13$ 2) Instead of the current number $n$ write the number $\sqrt{n}$, if $n$ is a perfect square . a) If the number $256$ was originally written on the board, is it possible that after a finite number of steps to get the number $55$ on the board? b) If the number $55$ was originally written on the board, is it possible that after a number finished the steps to get the number $256$ on the board?

LMT Speed Rounds, 2018 F

[b]p1.[/b] Find the area of a right triangle with legs of lengths $20$ and $18$. [b]p2.[/b] How many $4$-digit numbers (without leading zeros) contain only $2,0,1,8$ as digits? Digits can be used more than once. [b]p3.[/b] A rectangle has perimeter $24$. Compute the largest possible area of the rectangle. [b]p4.[/b] Find the smallest positive integer with $12$ positive factors, including one and itself. [b]p5.[/b] Sammy can buy $3$ pencils and $6$ shoes for $9$ dollars, and Ben can buy $4$ pencils and $4$ shoes for $10$ dollars at the same store. How much more money does a pencil cost than a shoe? [b]p6.[/b] What is the radius of the circle inscribed in a right triangle with legs of length $3$ and $4$? [b]p7.[/b] Find the angle between the minute and hour hands of a clock at $12 : 30$. [b]p8.[/b] Three distinct numbers are selected at random fromthe set $\{1,2,3, ... ,101\}$. Find the probability that $20$ and $18$ are two of those numbers. [b]p9.[/b] If it takes $6$ builders $4$ days to build $6$ houses, find the number of houses $8$ builders can build in $9$ days. [b]p10.[/b] A six sided die is rolled three times. Find the probability that each consecutive roll is less than the roll before it. [b]p11.[/b] Find the positive integer $n$ so that $\frac{8-6\sqrt{n}}{n}$ is the reciprocal of $\frac{80+6\sqrt{n}}{n}$. [b]p12.[/b] Find the number of all positive integers less than $511$ whose binary representations differ from that of $511$ in exactly two places. [b]p13.[/b] Find the largest number of diagonals that can be drawn within a regular $2018$-gon so that no two intersect. [b]p14.[/b] Let $a$ and $b$ be positive real numbers with $a > b $ such that $ab = a +b = 2018$. Find $\lfloor 1000a \rfloor$. Here $\lfloor x \rfloor$ is equal to the greatest integer less than or equal to $x$. [b]p15.[/b] Let $r_1$ and $r_2$ be the roots of $x^2 +4x +5 = 0$. Find $r^2_1+r^2_2$ . [b]p16.[/b] Let $\vartriangle ABC$ with $AB = 5$, $BC = 4$, $C A = 3$ be inscribed in a circle $\Omega$. Let the tangent to $\Omega$ at $A$ intersect $BC$ at $D$ and let the tangent to $\Omega$ at $B$ intersect $AC$ at $E$. Let $AB$ intersect $DE$ at $F$. Find the length $BF$. [b]p17.[/b] A standard $6$-sided die and a $4$-sided die numbered $1, 2, 3$, and $4$ are rolled and summed. What is the probability that the sum is $5$? [b]p18.[/b] Let $A$ and $B$ be the points $(2,0)$ and $(4,1)$ respectively. The point $P$ is on the line $y = 2x +1$ such that $AP +BP$ is minimized. Find the coordinates of $P$. [b]p19.[/b] Rectangle $ABCD$ has points $E$ and $F$ on sides $AB$ and $BC$, respectively. Given that $\frac{AE}{BE}=\frac{BF}{FC}= \frac12$, $\angle ADE = 30^o$, and $[DEF] = 25$, find the area of rectangle $ABCD$. [b]p20.[/b] Find the sum of the coefficients in the expansion of $(x^2 -x +1)^{2018}$. [b]p21.[/b] If $p,q$ and $r$ are primes with $pqr = 19(p+q+r)$, find $p +q +r$ . [b]p22.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B$ is acute and $AB < AC$. Let $D$ be the foot of altitude from $A$ to $BC$ and $F$ be the foot of altitude from $E$, the midpoint of $BC$, to $AB$. If $AD = 16$, $BD = 12$, $AF = 5$, find the value of $AC^2$. [b]p23.[/b] Let $a,b,c$ be positive real numbers such that (i) $c > a$ (ii) $10c = 7a +4b +2024$ (iii) $2024 = \frac{(a+c)^2}{a}+ \frac{(c+a)^2}{b}$. Find $a +b +c$. [b]p24.[/b] Let $f^1(x) = x^2 -2x +2$, and for $n > 1$ define $f^n(x) = f ( f^{n-1}(x))$. Find the greatest prime factor of $f^{2018}(2019)-1$. [b]p25.[/b] Let $I$ be the incenter of $\vartriangle ABC$ and $D$ be the intersection of line that passes through $I$ that is perpendicular to $AI$ and $BC$. If $AB = 60$, $C A =120$, and $CD = 100$, find the length of $BC$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Purple Comet Problems, 12

Let $a$ and $b$ be positive integers such that $(a^3 - a^2 + 1)(b^3 - b^2 + 2) = 2020$. Find $10a + b$.

2021 German National Olympiad, 6

Determine whether there are infinitely many triples $(u,v,w)$ of positive integers such that $u,v,w$ form an arithmetic progression and the numbers $uv+1, vw+1$ and $wu+1$ are all perfect squares.

1988 French Mathematical Olympiad, Problem 1

Let us consider a matrix $T$ with n rows denoted $1,\ldots,n$ and $p$ columns $1,\ldots,p$. Its entries $a_{ik}~(1\le i\le n,1\le k\le p)$ are integers such that $1\le a_{ik}\le N$, where $N$ is a given natural number. Let $E_i$ be the set of numbers that appear on the $i$-th row. Answer question (a) or (b). (a) Assume $T$ satisfies the following conditions: $(1)$ $E_i$ has exactly $p$ elements for each $i$, and $(2)$ all $E_i$'s are mutually distinct. Let $m$ be the smallest value of $N$ that permits a construction of such an $n\times p$ table $T$. i. Compute $m$ if $n=p+1$. ii. Compute $m$ if $n=10^{30}$ and $p=1998$. iii. Determine $\lim_{n\to\infty}\frac{m^p}n$, where $p$ is fixed. (b) Assume $T$ satisfies the following conditions instead: $(1)$ $p=n$, $(2)$ whenever $i,k$ are integers with $i+k\le n$, the number $a_{ik}$ is not in the set $E_{i+k}$. i. Prove that all $E_i$'s are mutually distinct. ii. Prove that if $n\ge2^q$ for some integer $q>0$, then $N\ge q+1$. iii. Let $n=2^r-1$ for some integer $r>0$. Prove that $N\ge r$ and show that there is such a table with $N=r$.

1997 Baltic Way, 8

If we add $1996$ to $1997$, we first add the unit digits $6$ and $7$. Obtaining $13$, we write down $3$ and “carry” $1$ to the next column. Thus we make a carry. Continuing, we see that we are to make three carries in total. Does there exist a positive integer $k$ such that adding $1996\cdot k$ to $1997\cdot k$ no carry arises during the whole calculation?

II Soros Olympiad 1995 - 96 (Russia), 9.2

Find the integers $x, y, z$ for which $$\dfrac{1}{x+\dfrac{1}{y+\dfrac{1}{z}}}=\dfrac{7}{17}$$