This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2020-2021 OMMC, 1

Find the remainder when $$20^{20}+21^{21}-21^{20}-20^{21}$$ is divided by $100$.

2010 Thailand Mathematical Olympiad, 6

Show that no triples of primes $p, q, r$ satisfy $p > r, q > r$, and $pq | r^p + r^q$

2024 Kosovo Team Selection Test, P1

Find all prime numbers $p$ and $q$ such that $p^q + 5q - 2$ is also a prime number.

2009 Indonesia TST, 4

Prove that there exist infinitely many positive integers $ n$ such that $ n!$ is not divisible by $ n^2\plus{}1$.

2006 Thailand Mathematical Olympiad, 12

Let $a_n = 2^{3n-1} + 3^{6n-2} + 5^{6n-3}$. Compute gcd$(a_1, a_2, ... , a_{25})$

2014 AMC 12/AHSME, 23

The fraction \[\dfrac1{99^2}=0.\overline{b_{n-1}b_{n-2}\ldots b_2b_1b_0},\] where $n$ is the length of the period of the repeating decimal expansion. What is the sum $b_0+b_1+\cdots+b_{n-1}$? $\textbf{(A) }874\qquad \textbf{(B) }883\qquad \textbf{(C) }887\qquad \textbf{(D) }891\qquad \textbf{(E) }892\qquad$

2024 Kazakhstan National Olympiad, 4

Prove that for any positive integers $a$, $b$, $c$, at least one of the numbers $a^3b+1$, $b^3c+1$, $c^3a+1$ is not divisible by $a^2+b^2+c^2$.

2021 Swedish Mathematical Competition, 6

Find the largest positive integer that cannot be written in the form $a + bc$ for some positive integers $a, b, c$, satisfying $a < b < c$.

2014 Rioplatense Mathematical Olympiad, Level 3, 6

Let $n \in N$ such that $1 + 2 + ... + n$ is divisible by $3$. Integers $a_1\ge a_2\ge a_3\ge 2$ have sum $n$ and they satisfy $1 + 2 + ... + a_1\le \frac{1}{3}( 1 + 2 + ... + n ) $ and $1 + 2 + ... + (a_1+ a_2) \le \frac{2}{3}( 1 + 2 + ... + n )$. Prove that there is a partition of $\{ 1 , 2 , ... , n\}$ in three subsets $A_1, A_2, A_3$ with cardinals $| A_i| = a_i, i = 1 , 2 , 3$, and with equal sums of their elements .

2005 Miklós Schweitzer, 3

Let $\alpha\leq 22$ be non-negative integer. For which $\alpha$ does the equation $$8x^{23}-5^{\alpha}y^{23}=1$$ have the most integer solutions (x,y)? What can we say about $\alpha\geq 23$? [hide=Note]I believe the eqn has solutions only when $\alpha=0$. taking modulo 47, $\alpha\equiv 9,17\pmod{23}$ or ($23|\alpha$ and $47|x$). taking modulo 139 and 277 eliminates the $\alpha\equiv 9,17\pmod{23}$ cases. 139=23*6+1 , 277=23*12+1[/hide]

2001 Vietnam National Olympiad, 2

Let $N = 6^{n}$, where $n$ is a positive integer, and let $M = a^{N}+b^{N}$, where $a$ and $b$ are relatively prime integers greater than $1. M$ has at least two odd divisors greater than $1$ are $p,q$. Find the residue of $p^{N}+q^{N}\mod 6\cdot 12^{n}$.

1987 India National Olympiad, 1

Given $ m$ and $ n$ as relatively prime positive integers greater than one, show that \[ \frac{\log_{10} m}{\log_{10} n}\] is not a rational number.

2003 Denmark MO - Mohr Contest, 5

For which natural numbers $n\ge 2$ can the numbers from $1$ to $16$ be lined up in a square scheme so that the four row sums and the four column sums are all mutually different and divisible by $n$?

LMT Accuracy Rounds, 2023 S10

Positive integers $a$, $b$, and $c$ satisfy $a^2 +b^2 = c^3 -1$ where $c \le 40$. Find the sum of all distinct possible values of $c$.

1998 India National Olympiad, 2

Let $a$ and $b$ be two positive rational numbers such that $\sqrt[3] {a} + \sqrt[3]{b}$ is also a rational number. Prove that $\sqrt[3]{a}$ and $\sqrt[3] {b}$ themselves are rational numbers.

MMATHS Mathathon Rounds, 2015

[u]Round 1[/u] [b]p1.[/b] If this mathathon has $7$ rounds of $3$ problems each, how many problems does it have in total? (Not a trick!) [b]p2.[/b] Five people, named $A, B, C, D,$ and $E$, are standing in line. If they randomly rearrange themselves, what’s the probability that nobody is more than one spot away from where they started? [b]p3.[/b] At Barrios’s absurdly priced fish and chip shop, one fish is worth $\$13$, one chip is worth $\$5$. What is the largest integer dollar amount of money a customer can enter with, and not be able to spend it all on fish and chips? [u]Round 2[/u] [b]p4.[/b] If there are $15$ points in $4$-dimensional space, what is the maximum number of hyperplanes that these points determine? [b]p5.[/b] Consider all possible values of $\frac{z_1 - z_2}{z_2 - z_3} \cdot \frac{z_1 - z_4}{z_2 - z_4}$ for any distinct complex numbers $z_1$, $z_2$, $z_3$, and $z_4$. How many complex numbers cannot be achieved? [b]p6.[/b] For each positive integer $n$, let $S(n)$ denote the number of positive integers $k \le n$ such that $gcd(k, n) = gcd(k + 1, n) = 1$. Find $S(2015)$. [u]Round 3 [/u] [b]p7.[/b] Let $P_1$, $P_2$,$...$, $P_{2015}$ be $2015$ distinct points in the plane. For any $i, j \in \{1, 2, ...., 2015\}$, connect $P_i$ and $P_j$ with a line segment if and only if $gcd(i - j, 2015) = 1$. Define a clique to be a set of points such that any two points in the clique are connected with a line segment. Let $\omega$ be the unique positive integer such that there exists a clique with $\omega$ elements and such that there does not exist a clique with $\omega + 1$ elements. Find $\omega$. [b]p8.[/b] A Chinese restaurant has many boxes of food. The manager notices that $\bullet$ He can divide the boxes into groups of $M$ where $M$ is $19$, $20$, or $21$. $\bullet$ There are exactly $3$ integers $x$ less than $16$ such that grouping the boxes into groups of $x$ leaves $3$ boxes left over. Find the smallest possible number of boxes of food. [b]p9.[/b] If $f(x) = x|x| + 2$, then compute $\sum^{1000}_{k=-1000} f^{-1}(f(k) + f(-k) + f^{-1}(k))$. [u]Round 4 [/u] [b]p10.[/b] Let $ABC$ be a triangle with $AB = 13$, $BC = 20$, $CA = 21$. Let $ABDE$, $BCFG$, and $CAHI$ be squares built on sides $AB$, $BC$, and $CA$, respectively such that these squares are outside of $ABC$. Find the area of $DEHIFG$. [b]p11.[/b] What is the sum of all of the distinct prime factors of $7783 = 6^5 + 6 + 1$? [b]p12.[/b] Consider polyhedron $ABCDE$, where $ABCD$ is a regular tetrahedron and $BCDE$ is a regular tetrahedron. An ant starts at point $A$. Every time the ant moves, it walks from its current point to an adjacent point. The ant has an equal probability of moving to each adjacent point. After $6$ moves, what is the probability the ant is back at point $A$? PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2782011p24434676]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Jozsef Wildt International Math Competition, W. 22

Let $A$ and $B$ the series: $$A=\sum \limits_{n=1}^{\infty}\frac{C_{2n}^1}{C_{2n}^0+C_{2n}^1+\cdots +C_{2n}^{2n}},\ B=\sum \limits_{n=1}^{\infty}\frac{\Gamma \left(n+\frac{1}{2}\right) }{\Gamma \left(n+\frac{5}{2}\right)}$$Study if $\frac{A}{B}$ is irrational number.

1993 Bundeswettbewerb Mathematik, 3

There are pairs of square numbers with the following two properties: (1) Their decimal representations have the same number of digits, with the first digit starting is different from $0$ . (2) If one appends the second to the decimal representation of the first, the decimal representation results another square number. Example: $16$ and $81$; $1681 = 41^2$. Prove that there are infinitely many pairs of squares with these properties.

2014 Ukraine Team Selection Test, 9

Let $m, n$ be odd prime numbers. Find all pairs of integers numbers $a, b$ for which the system of equations: $x^m+y^m+z^m=a$, $x^n+y^n+z^n=b$ has many solutions in integers $x, y, z$.

2020 Durer Math Competition Finals, 3

Is it possible for the least common multiple of five consecutive positive integers to be a perfect square?

1973 Dutch Mathematical Olympiad, 2

Prove that for every $n \in N$ there exists exactly one sequence of $2n + 1$ consecutive numbers, such that the sum of the squares of the first $n+1$ numbers is equal to the sum of the squares of the last $n$ numbers. Also express the smallest number of that sequence in terms of $n$.

2018 PUMaC Number Theory A, 1

Find the number of positive integers $n < 2018$ such that $25^n + 9^n$ is divisible by $13$.

2019 Kosovo National Mathematical Olympiad, 2

Find all positive integers $n$ such that $6^n+1$ it has all the same digits when it is writen in decimal representation.

2012 Greece Team Selection Test, 1

Find all triples $(p,m,n)$ satisfying the equation $p^m-n^3=8$ where $p$ is a prime number and $m,n$ are nonnegative integers.

2012 LMT, Team Round

[b]p1.[/b] What is $7\%$ of one half of $11\%$ of $20000$ ? [b]p2.[/b] Three circles centered at $A, B$, and $C$ are tangent to each other. Given that $AB = 8$, $AC = 10$, and $BC = 12$, find the radius of circle $ A$. [b]p3. [/b]How many positive integer values of $x$ less than $2012$ are there such that there exists an integer $y$ for which $\frac{1}{x} +\frac{2}{2y+1} =\frac{1}{y}$ ? [b]p4. [/b]The positive difference between $ 8$ and twice $x$ is equal to $11$ more than $x$. What are all possible values of $x$? [b]p5.[/b] A region in the coordinate plane is bounded by the equations $x = 0$, $x = 6$, $y = 0$, and $y = 8$. A line through $(3, 4)$ with slope $4$ cuts the region in half. Another line going through the same point cuts the region into fourths, each with the same area. What is the slope of this line? [b]p6.[/b] A polygon is composed of only angles of degrees $138$ and $150$, with at least one angle of each degree. How many sides does the polygon have? [b]p7.[/b] $M, A, T, H$, and $L$ are all not necessarily distinct digits, with $M \ne 0$ and $L \ne 0$. Given that the sum $MATH +LMT$, where each letter represents a digit, equals $2012$, what is the average of all possible values of the three-digit integer $LMT$? [b]p8. [/b]A square with side length $\sqrt{10}$ and two squares with side length $\sqrt{7}$ share the same center. The smaller squares are rotated so that all of their vertices are touching the sides of the larger square at distinct points. What is the distance between two such points that are on the same side of the larger square? [b]p9.[/b] Consider the sequence $2012, 12012, 20120, 20121, ...$. This sequence is the increasing sequence of all integers that contain “$2012$”. What is the $30$th term in this sequence? [b]p10.[/b] What is the coefficient of the $x^5$ term in the simplified expansion of $(x +\sqrt{x} +\sqrt[3]{x})^{10}$ ? PS. You had better use hide for answers.